平面几何问题(斯特瓦尔特定理的)

1:自圆O外一点P引圆的两条切线PE,PF,E,F为切点,过P任意引圆的割线交圆O与A,B,交EF与C,求证2/PC=1/PA+1/PB2:若三角形ABC的三边为连续整数... 1:自圆O外一点P引圆的两条切线PE,PF,E,F为切点,过P任意引圆的割线交圆O与A,B,交EF与C,求证2/PC=1/PA+1/PB
2:若三角形ABC的三边为连续整数,求最大角是最小角的两倍,求三角形三边长
3:在三角型ABC中,AB>AB,AE平分角A,且交BC于E,在BC上有一点S,使BS=EC,求证AS^2-AE^2=(AB-AC)^2
展开
fzmece
2010-01-15 · TA获得超过2.4万个赞
知道大有可为答主
回答量:5621
采纳率:0%
帮助的人:0
展开全部
1.
由圆的切割线定理,可得:
PE^=PF^=PA*PB
由圆的相交弦定理,可得:
CE*CF=AC*BC

在△PEF中,对EF上的点C使用斯特瓦尔特定理:
PE^*CF+PF^*CE=PC^*EF+CE*CF*EF
PE^*CF+PE^+CE=PC^*EF+AC*BC*EF
PE^*(CF+CE)=EF*(PC^+AC*BC)
PE^*EF=EF*(PC^+AC*BC)
PE^=PC^+AC*BC
PE^=PC^+(PC-PA)*(PB-PC)
PE^=PC^+(PB*PC+PA*PC-PA*PB-PC^)
PE^=PB*PC+PA*PC-PA*PB
PE^+PA*PB=PC*(PA+PB)
2PA*PB=PC*(PA+PB)
2/PC=(PA+PB)/(PA*PB)
2/PC=(1/PA)+(1/PB)
得证

2.
设△ABC中,BC>AC>AB,根据大边对大角的定理,可得出三个内角的大小关系:
∠A>∠B>∠C,根据已知条件,有∠A=2∠C成立,且因为三角形的三边为连续整数,可设BC,AC,AB的长度分别为k+2,k+1,k
过A点作∠A的平分线AD,交BC边于D点
于是有∠CAD=∠BAC/2(即原先的∠A),因此可得∠C=∠CAD,故△CAD为等腰三角形,两腰AD=CD
由角平分线定理,可得到比例关系:
AC/AB=CD/BD
设CD=a,BD=b,则得到比例:
(k+1)/k=a/b ①
且有AD=CD=a
由BC=BD+CD得出:
k+2=a+b
结合①式,可得出:
a=(k+1)(k+2)/(2k+1) ②

在△ABC中,点D位于BC边上,可根据斯托瓦尔特定理列出方程:
AC^*BD+AB^*CD=AD^*BC+BD*CD*BC
代入AC=k+1,AB=k,BC=k+2,BD=CD=a,BD=b:
(k+1)^*b + k^*a = a^*(k+2) + ab*(k+2)
等式左右两边同时除以b:
(k+1)^+ k^*(a/b) = a * (a/b)*(k+2) + a*(k+2)
代入①式:
(k+1)^+ k^*(k+1)/k= a* [(k+1)/k]*(k+2) + a(k+2)
(k+1)^+k(k+1)=a(k+2)*[(k+1)/k + 1]
(2k+1)(k+1)=a(k+2)*(2k+1)/k
k+1=a(k+2)/k
代入②:
k+1=(k+1)(k+2)^/[k(2k+1)]
(k+2)^=2k^+k
<=>k=4 (k=-1舍去)
<=>k+1=5,k+2=6
故三角形ABC的三边长分别为4,5,6

3.原条件是不是“AB>AC”?反正我是按照这个做的,它并不影响过程

由已知条件BS=CE,可得到BE=BS+SE=CE+SE=SC
且有SE=BE-BS=BE-CE成立

在△ABE中,S为BE边上的点,由斯托瓦尔特定理得:
AB^*SE+AE^*BS=AS^*BE+BS*SE*BE
用CE,BE分别替换SC,BS:
AB^*SE+AE^*CE=AS^*BE+CE*SE*BE ①

在△ASC中,E为SC边上的点,由斯托瓦尔特定理得:
AC^*SE+AS^*CE=AE^*SC+SE*CE*SC
仍然用CE,BE分别替换式中的SC,BS:
AC^*SE+AS^*CE=AE^*BE+SE*CE*BE ②
用②-①,得:
(AC^-AB^)*SE+(AS^-AE^)*CE=(AE^-AS^)*BE
(AS^-AE^)*(CE+BE)=(AB^-AC^)*SE
(AS^-AE^)*(CE+BE)=(AB^-AC^)*(BE-CE)
AS^-AE^=(AB^-AC^)*(BE-CE)/(BE+CE) ③

在△ABC中,AE平分∠BAC,由角平分线定理,得到比例关系:
BE/CE=AB/AC
于是,BE=(AB/AC)*CE
所以:
(BE-CE)/(BE+CE)=[(AB/AC)*CE -CE]/[(AB/AC)*CE +CE]
=(AB-AC)/(AB+AC)
于是,③式演变为:
AS^-AE^=(AB^-AC^)*(AB-AC)/(AB+AC)=(AB+AC)*(AB-AC)*(AB-AC)/(AB+AC)
=(AB-AC)^
得证
上海华然企业咨询
2024-10-28 广告
在构建大模型训练语料时,我们上海华然企业咨询有限公司注重数据的广泛性与代表性。语料涵盖了财经新闻、行业动态、政策解读、科技前沿、市场分析等多领域信息,确保模型能够学习到丰富的语言模式和知识背景。每条语料经过精心筛选与清洗,确保无冗余、无偏见... 点击进入详情页
本回答由上海华然企业咨询提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式