展开全部
有关系的。如果矩阵可以对角化,那么非0特征值的个数就等于矩阵的秩;如果矩阵不可以对角化,这个结论就不一定成立了。
为讨论方便,设A为m阶方阵。证明:设方阵A的秩为n。
因为任何矩阵都可以通过一系列初等变换,变成形如:
1 0 … 0 … 0
0 1 … 0 … 0
…………………
0 0 … 1 … 0
0 0 … 0 … 0
…………………
0 0 … 0 … 0
的矩阵,称为矩阵的标准形(注:这不是二次型的对称矩阵提到的标准形)。本题讨论的是方阵,就是可以通过一系列初等行变换的标准形为:主对角线前若干个是1;其余的是若干个0。
扩展资料
线性代数内容前后联系紧密,相互渗透,各知识点之间有着千丝万缕的联系,因此解题方法灵活多变。记住知识点不是难事,但要把握好知识点的相互联系,非得下一番功夫不可。
首先要把握定理和公式成立的条件,一定要注意同时把某一知识点对应的适用条件掌握好!再者要弄清知识点之间的纵横联系,另外还有容易混淆的地方,如矩阵的等价和向量组的等价之间的关系,线性相关与线性表示等。
掌握它们之间的联系与区别,对大家做线性代数部分的大题也有很大的帮助。
参考资料来源:百度百科-特征值
迈杰
2024-11-30 广告
2024-11-30 广告
迈杰转化医学研究(苏州)有限公司于2013年成立,其前身为凯杰(苏州)转化医学研究有限公司。基于基因组学、蛋白组学、细胞组学及病理组学等综合性转化医学平台,丰富的伴随诊断开发经验,高质量的管理体系以及高素质的研发管理团队,迈杰转化医学为全球...
点击进入详情页
本回答由迈杰提供
展开全部
多少有一点联系,不过不算很紧密。
1.方阵A不满秩等价于A有零特征值。
2.A的秩不小于A的非零特征值的个数。
1.方阵A不满秩等价于A有零特征值。
2.A的秩不小于A的非零特征值的个数。
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一句话:秩就是非零特征值的个数
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
5矩阵的特征值与特征向量1_chunk_4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询