3个回答
展开全部
-1是A的一个特征值等价于说|E+A|=0。
由于A为正交阵,所以E=AA',其中A'为A的转置。
所以E+A=AA'+A=A(A'+E)=A(A+E)'。
所以|E+A|=|A||(A+E)'|=-|A+E|=|E+A|。
移项合并得2|E+A|=0,所以|E+A|=0。
由于A为正交阵,所以E=AA',其中A'为A的转置。
所以E+A=AA'+A=A(A'+E)=A(A+E)'。
所以|E+A|=|A||(A+E)'|=-|A+E|=|E+A|。
移项合并得2|E+A|=0,所以|E+A|=0。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
即证明|E+A|=0,利用|E+A|=|A*AT+A|=-|AT+E|=-|A+E|,从而得证。其中AT为A的转置。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询