1个回答
展开全部
(2)解析:令m=1,f’(x)=(x-1)/x^2,x∈[1,+∞)时,f’(x)=(x-1)/x^2>=0,
∴f(x)在[1,+∞)上单调递增,
设1<b<a
∴a^ab^b4^a>1,(a+b)^(a+b)>1,
要比较f(a^ab^a4^a)与f[(a+b)^(a+b)]的大小,
只需比较a^ab^b4^a与(a+b)^(a+b)的大小.
分别取对数作差:
log2(a^ab^b4^a)−log2[(a+b)^(a+b)]
=alog2a+blog2b+2a-(a+b)log2(a+b)
=alog2a+2a-alog2(a+b)-blog2(a+b)+blog2b,
设g(x)=xlog2x+2x-xlog2(x+b)+blog2b,x∈(b,+∞),
g’(x)=log2x+log2e+2−log2(x+b)−xlog2e/(x+b) -b log2e /(x+b)
=log2x+2-log2(x+b)
=log2[4x/(x+b)].
∵x>b,
∴g′(x)>0,g(x)在(b,+∞)单调递增.
∵a>b,∴g(a)>g(b),
即:alog2a+2a-alog2(a+b)-blog2(a+b)+blog2b>0,
∴log2(a^ab^b4^a)>log2[(a+b)^(a+b)],
∴f(a^ab^b4^a)>f[(a+b)^(a+b)];
(3)解析:令m=1,f’(x)=(x-1)/x^2,
设{an}为正项数列,且n≥2时[f′(an)•f′(a(n-1))+[an+a(n-1)-1]/(an^2a(n-1)^2)]an^2=q,
∴an/a(n-1)=q(n≥2),
∴{an}是首项为a1,公比为q的等比数列(q>0)
设Sn为数列{an}的前n项和
∴Sn=a1(1-q^n)/(1-q),S(n+1)=a1(1-q^(n+1))/(1-q),
∴S(n+1)/Sn=(1-q^(n+1))/(1-q^n).
∵bn=∑(i=1,n)[(S(i+1))/Si]=(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n),q≥2014,
构造数列{(S(n+1))/Sn },其前n项和为bn
即bn=(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n),q≥2014,
∵bn≥2015n恒成立,
即:(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)≥2015n恒成立,
令g(x)=(1-a^(x+1))/(1-a^x)(a>0)
g’(x)=(-a^(x+1)lna)(1-a^x)-(1-a^(x+1))(-a^xlna)/(1-a^x)^2
=-a^xlna(a-1)/(1-a^x)^2<0
∴当q≥2014时,数列{(1-q^(n+1)/(1-q^n)}为单调递减数列,
且当n趋向无穷时,(1-q^(n+1)/(1-q^n)的极限为q,
∵当q≥2015时,数列{(1-q^(n+1)/(1-q^n)}中的每一项都大于2015,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)≥2015n恒成立,
当q∈[2014,2015)时,由 数列{(1-q^(n+1)/(1-q^n)}为单调递减数列,
且当n趋向无穷时,(1-q^(n+1)/(1-q^n)的极限为q<2015,
说明数列{(1-q^(n+1)/(1-q^n)}在有限项后必定小于2015,
设(1-q^(n+1)/(1-q^r)=2015+M,(r=1,2,3,…,n),
且数列{Mn}也为单调递减数列,M1≥0,
根据以上分析:数列{(1-q^(n+1)/(1-q^n) }中必有一项,
(设为第k项)(1-q^(k+1)/(1-q^k=2015+Mk,(其中Mk≥0,且M(k+1)<0),
∵{Mn}为单调递减数列,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)
=2015n+M1+M2+…+Mk+M(k+1)+…+Mn
≤2015n+kM1+M(k+1)+…+Mn
≤2015n+kM1+(n-k)M(k+1),
当当n趋向无穷时时,kM1+(n-k)M(k+1)<0,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)<2015n,
∴q∈[2014,2015)时,不满足条件.
综上所得:qmin=2015.
∴f(x)在[1,+∞)上单调递增,
设1<b<a
∴a^ab^b4^a>1,(a+b)^(a+b)>1,
要比较f(a^ab^a4^a)与f[(a+b)^(a+b)]的大小,
只需比较a^ab^b4^a与(a+b)^(a+b)的大小.
分别取对数作差:
log2(a^ab^b4^a)−log2[(a+b)^(a+b)]
=alog2a+blog2b+2a-(a+b)log2(a+b)
=alog2a+2a-alog2(a+b)-blog2(a+b)+blog2b,
设g(x)=xlog2x+2x-xlog2(x+b)+blog2b,x∈(b,+∞),
g’(x)=log2x+log2e+2−log2(x+b)−xlog2e/(x+b) -b log2e /(x+b)
=log2x+2-log2(x+b)
=log2[4x/(x+b)].
∵x>b,
∴g′(x)>0,g(x)在(b,+∞)单调递增.
∵a>b,∴g(a)>g(b),
即:alog2a+2a-alog2(a+b)-blog2(a+b)+blog2b>0,
∴log2(a^ab^b4^a)>log2[(a+b)^(a+b)],
∴f(a^ab^b4^a)>f[(a+b)^(a+b)];
(3)解析:令m=1,f’(x)=(x-1)/x^2,
设{an}为正项数列,且n≥2时[f′(an)•f′(a(n-1))+[an+a(n-1)-1]/(an^2a(n-1)^2)]an^2=q,
∴an/a(n-1)=q(n≥2),
∴{an}是首项为a1,公比为q的等比数列(q>0)
设Sn为数列{an}的前n项和
∴Sn=a1(1-q^n)/(1-q),S(n+1)=a1(1-q^(n+1))/(1-q),
∴S(n+1)/Sn=(1-q^(n+1))/(1-q^n).
∵bn=∑(i=1,n)[(S(i+1))/Si]=(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n),q≥2014,
构造数列{(S(n+1))/Sn },其前n项和为bn
即bn=(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n),q≥2014,
∵bn≥2015n恒成立,
即:(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)≥2015n恒成立,
令g(x)=(1-a^(x+1))/(1-a^x)(a>0)
g’(x)=(-a^(x+1)lna)(1-a^x)-(1-a^(x+1))(-a^xlna)/(1-a^x)^2
=-a^xlna(a-1)/(1-a^x)^2<0
∴当q≥2014时,数列{(1-q^(n+1)/(1-q^n)}为单调递减数列,
且当n趋向无穷时,(1-q^(n+1)/(1-q^n)的极限为q,
∵当q≥2015时,数列{(1-q^(n+1)/(1-q^n)}中的每一项都大于2015,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)≥2015n恒成立,
当q∈[2014,2015)时,由 数列{(1-q^(n+1)/(1-q^n)}为单调递减数列,
且当n趋向无穷时,(1-q^(n+1)/(1-q^n)的极限为q<2015,
说明数列{(1-q^(n+1)/(1-q^n)}在有限项后必定小于2015,
设(1-q^(n+1)/(1-q^r)=2015+M,(r=1,2,3,…,n),
且数列{Mn}也为单调递减数列,M1≥0,
根据以上分析:数列{(1-q^(n+1)/(1-q^n) }中必有一项,
(设为第k项)(1-q^(k+1)/(1-q^k=2015+Mk,(其中Mk≥0,且M(k+1)<0),
∵{Mn}为单调递减数列,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)
=2015n+M1+M2+…+Mk+M(k+1)+…+Mn
≤2015n+kM1+M(k+1)+…+Mn
≤2015n+kM1+(n-k)M(k+1),
当当n趋向无穷时时,kM1+(n-k)M(k+1)<0,
∴(1-q^2)/(1-q)+(1-q^3)/(1-q^2)+…+(1-q^(n+1)/(1-q^n)<2015n,
∴q∈[2014,2015)时,不满足条件.
综上所得:qmin=2015.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询