设三阶实对称矩阵A,求正交矩阵Q,使得Q^-1AQ为对角矩阵(1)矩阵A的特征值为

(2)属于3个特征值得特征向量为(若两个特征值相等,要求其特征向量线性无关)(3)正交矩阵Q为(4)对角矩阵为Q^-1AQ为A=5-7-7-75-7-7-75... (2)属于3个特征值得特征向量为(若两个特征值相等,要求其特征向量线性无关)
(3)正交矩阵Q为
(4)对角矩阵为Q^-1AQ为
A=5 -7 -7
-7 5 -7
-7 -7 5
展开
一个人郭芮
高粉答主

2014-06-02 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84681

向TA提问 私信TA
展开全部
设矩阵A的特征值为λ那么
|A-λE|=
5-λ -7 -7
-7 5-λ -7
-7 -7 5-λ 第2行减去第1行
=
5-λ -7 -7
-12+λ 12-λ 0
-7 -7 5-λ 第1列加上第2列
=
-2-λ -7 -7
0 12-λ 0
-14 -7 5-λ 按第2行展开
=
(12-λ)(λ^2-3λ-108)=(λ-12)(λ-12)(λ+9)=0
解得
λ=12,12,-9
当λ=12时,
A-12E=
-7 -7 -7
-7 -7 -7
-7 -7 -7 第2行减去第1行,第3行减去第1行,第1行除以-7

1 1 1
0 0 0
0 0 0
得到特征向量(1,-1,0)^T和(0,1,-1)^T

再将其正交化为
(1,-1,0)^T和
(0,1,-1)^T+ 1/2 *(1,-1,0)^T=(1/2,1/2,-1)

当λ= -9时,
A+9E=
14 -7 -7
-7 14 -7
-7 -7 14 第3行加上第2行,第3行加上第1行,第1行加上第2行×2

0 21 -21
-7 14 -7
0 0 0 第1行除以21,第2行除以-7,交换第1和第2行

1 -2 1
0 1 -1
0 0 0 第1行加上第2行×2

1 0 -1
0 1 -1
0 0 0
得到特征向量(1,1,1)^T

所以正交矩阵Q为

1 1/2 1
-1 1/2 1
0 -1 1
对角矩阵为Q^-1AQ则为

12
12
-9
富港检测技术(东莞)有限公司_
2024-04-02 广告
正弦振动多用于找出产品设计或包装设计的脆弱点。看在哪一个具体频率点响应最大(共振点);正弦振动在任一瞬间只包含一种频率的振动,而随机振动在任一瞬间包含频谱范围内的各种频率的振动。由于随机振动包含频谱内所有的频率,所以样品上的共振点会同时激发... 点击进入详情页
本回答由富港检测技术(东莞)有限公司_提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式