设三阶实对称矩阵A,求正交矩阵Q,使得Q^-1AQ为对角矩阵(1)矩阵A的特征值为

(2)属于3个特征值得特征向量为(若两个特征值相等,要求其特征向量线性无关)(3)正交矩阵Q为(4)对角矩阵为Q^-1AQ为A=5-7-7-75-7-7-75... (2)属于3个特征值得特征向量为(若两个特征值相等,要求其特征向量线性无关)
(3)正交矩阵Q为
(4)对角矩阵为Q^-1AQ为
A=5 -7 -7
-7 5 -7
-7 -7 5
展开
一个人郭芮
高粉答主

2014-06-02 · GR专注于各种数学解题
一个人郭芮
采纳数:37941 获赞数:84668

向TA提问 私信TA
展开全部
设矩阵A的特征值为λ那么
|A-λE|=
5-λ -7 -7
-7 5-λ -7
-7 -7 5-λ 第2行减去第1行
=
5-λ -7 -7
-12+λ 12-λ 0
-7 -7 5-λ 第1列加上第2列
=
-2-λ -7 -7
0 12-λ 0
-14 -7 5-λ 按第2行展开
=
(12-λ)(λ^2-3λ-108)=(λ-12)(λ-12)(λ+9)=0
解得
λ=12,12,-9
当λ=12时,
A-12E=
-7 -7 -7
-7 -7 -7
-7 -7 -7 第2行减去第1行,第3行减去第1行,第1行除以-7

1 1 1
0 0 0
0 0 0
得到特征向量(1,-1,0)^T和(0,1,-1)^T

再将其正交化为
(1,-1,0)^T和
(0,1,-1)^T+ 1/2 *(1,-1,0)^T=(1/2,1/2,-1)

当λ= -9时,
A+9E=
14 -7 -7
-7 14 -7
-7 -7 14 第3行加上第2行,第3行加上第1行,第1行加上第2行×2

0 21 -21
-7 14 -7
0 0 0 第1行除以21,第2行除以-7,交换第1和第2行

1 -2 1
0 1 -1
0 0 0 第1行加上第2行×2

1 0 -1
0 1 -1
0 0 0
得到特征向量(1,1,1)^T

所以正交矩阵Q为

1 1/2 1
-1 1/2 1
0 -1 1
对角矩阵为Q^-1AQ则为

12
12
-9
Sievers分析仪
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式