如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,动点P以每秒1个单位长度的速度从点A开始,沿AB边向点B移动,
如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,动点P以每秒1个单位长度的速度从点A开始,沿AB边向点B移动,PD⊥AC于D,PE⊥BC于E、设点P运动时间为...
如图,在Rt△ABC中,∠C=90°,AB=10,BC=8,动点P以每秒1个单位长度的速度从点A开始,沿AB边向点B移动,PD⊥AC于D,PE⊥BC于E、设点P运动时间为t秒(0<t<10),△PAD和△PBE的面积分别为S1,S2,(1)当t=1时,求PDBC的值;(2)在点P移动的过程中,是否存在t值,使得3S1+S2=24?若存在,求出这个t值;若不存在,请说明理由.
展开
展开全部
(1)动点P以每秒1个单位长度的速度从点A开始,沿AB边向点B移动,
当t=1时,AP=1,
∵PD⊥AC,PE⊥BC,∠A+∠APD=90°
∴∠A=∠BPE,∠APD=∠B
∴△APD∽△PBE
∴
=
=
故当t=1时,
=
;
(2)假设存在t值,使得3S1+S2=24,则:
AP=t,PB=10-t,
由题意得,sin∠A=cos∠B=
,cos∠A=sin∠B=
,
∴
=
=
,
=
=
∴PD=
t,PE=
(10-t),AD=
t,BE=
(10-t)
∵S1=
×PD×AD=
t2,S2=
×PE×BE=
(10-t)2
∴3×
t2+
(10-t)2=24
解得t=5s
∴存在t=5秒,使得3S1+S2=24.
当t=1时,AP=1,
∵PD⊥AC,PE⊥BC,∠A+∠APD=90°
∴∠A=∠BPE,∠APD=∠B
∴△APD∽△PBE
∴
PD |
BC |
AP |
AB |
1 |
10 |
故当t=1时,
PD |
BC |
1 |
10 |
(2)假设存在t值,使得3S1+S2=24,则:
AP=t,PB=10-t,
由题意得,sin∠A=cos∠B=
4 |
5 |
3 |
5 |
∴
PD |
PA |
PE |
PB |
4 |
5 |
AD |
PA |
BE |
PB |
3 |
5 |
∴PD=
4 |
5 |
4 |
5 |
3 |
5 |
3 |
5 |
∵S1=
1 |
2 |
6 |
25 |
1 |
2 |
6 |
25 |
∴3×
6 |
25 |
6 |
25 |
解得t=5s
∴存在t=5秒,使得3S1+S2=24.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询