已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=23,BD⊥A1A,∠BAD=∠A1AC=60°,点
已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=23,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.(Ⅰ)...
已知四棱柱ABCD-A1B1C1D1的底面ABCD是边长为2的菱形,AC∩BD=O,AA1=23,BD⊥A1A,∠BAD=∠A1AC=60°,点M是棱AA1的中点.(Ⅰ)求证:A1C∥平面BMD;(Ⅱ)求证:A1O⊥平面ABCD;(Ⅲ)求直线BM与平面BC1D所成角的正弦值.
展开
1个回答
展开全部
解答:(Ⅰ)证明:连结MO,
∵A1M=MA,AO=OC,
∴MO∥A1C,
∵MO?平面BMD,A1C不包含于平面BMD,
∴A1C∥平面BMD.…(3分)
(Ⅱ)证明:∵BD⊥AA1,BD⊥AC,∴BD⊥面A1AC,
于是BD⊥A1O,AC∩BD=O,
∵AB=CD=2,∠BAD=60°,
∴AO=
AC=
,
又∵AA1=2
,∠A1AC=60°,∴A1O⊥AC,
又∵A1O⊥BD,∴A1O⊥平面ABCD.…(7分)
(Ⅲ)解:如图,以O为原点,以OA为x轴,OB为y轴,OA1为z轴,建立直角坐标系,
由题意知A1(0,0,3),A(
,0,0),C(-
,0,0),B(0,1,0),D(0,-1,0),
∵
=
=(?2
,0,0),∴C1=(?2
,0,3),
∵M(
,0,
),∴
=(-
,1,-
),
=(0,2,0),
=(-2
,-1,3),
设平面BC1D的法向量为
=(x,y,z),
则
∵A1M=MA,AO=OC,
∴MO∥A1C,
∵MO?平面BMD,A1C不包含于平面BMD,
∴A1C∥平面BMD.…(3分)
(Ⅱ)证明:∵BD⊥AA1,BD⊥AC,∴BD⊥面A1AC,
于是BD⊥A1O,AC∩BD=O,
∵AB=CD=2,∠BAD=60°,
∴AO=
1 |
2 |
3 |
又∵AA1=2
3 |
又∵A1O⊥BD,∴A1O⊥平面ABCD.…(7分)
(Ⅲ)解:如图,以O为原点,以OA为x轴,OB为y轴,OA1为z轴,建立直角坐标系,
由题意知A1(0,0,3),A(
3 |
3 |
∵
A1C1 |
AC |
3 |
3 |
∵M(
| ||
2 |
3 |
2 |
MB |
| ||
2 |
3 |
2 |
DB |
BC1 |
3 |
设平面BC1D的法向量为
n |
则
|