三棱锥P-ABC中,PB=PC,AB=AC,点D为BC中点,AH⊥PD于H点,连BH,求证:平面ABH⊥平面PBC

三棱锥P-ABC中,PB=PC,AB=AC,点D为BC中点,AH⊥PD于H点,连BH,求证:平面ABH⊥平面PBC.... 三棱锥P-ABC中,PB=PC,AB=AC,点D为BC中点,AH⊥PD于H点,连BH,求证:平面ABH⊥平面PBC. 展开
 我来答
彤良T5
推荐于2016-12-02 · TA获得超过242个赞
知道答主
回答量:125
采纳率:0%
帮助的人:125万
展开全部
证明:∵PB=PC,AB=AC,点D为BC中点,
∴PD⊥BC,AD⊥BC,
∴BC⊥面PAD,
∵AH?面PAD,∴AH⊥BC.又 AH⊥PD于H点,而BC和PD是平面PBC内的两条相交直线,
∴AH⊥平面PBC,而 AH?平面ABH,
∴平面ABH⊥面PBC.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式