kmean算法是干什么的

 我来答
djf813
2014-12-20 · TA获得超过100个赞
知道小有建树答主
回答量:162
采纳率:0%
帮助的人:71.1万
展开全部
聚类分析是一种静态数据分析方法,常被用于机器学习,模式识别,数据挖掘等领域。通常认为,聚类是一种无监督式的机器学习方法,它的过程是这样的:在未知样本类别的情况下,通过计算样本彼此间的距离(欧式距离,马式距离,汉明距离,余弦距离等)来估计样本所属类别。从结构性来划分,聚类方法分为自上而下和自下而上两种方法,前者的算法是先把所有样本视为一类,然后不断从这个大类中分离出小类,直到不能再分为止;后者则相反,首先所有样本自成一类,然后不断两两合并,直到最终形成几个大类。 
常用的聚类方法主要有以下四种:   //照搬的wiki,比较懒...
Connectivity based clustering  (如hierarchical clustering 层次聚类法)
Centroid-based clustering  (如kmeans)
Distribution-based clustering
Density-based clustering
  Kmeans聚类是一种自下而上的聚类方法,它的优点是简单、速度快;缺点是聚类结果与初始中心的选择有关系,且必须提供聚类的数目。Kmeans的第二个缺点是致命的,因为在有些时候,我们不知道样本集将要聚成多少个类别,这种时候kmeans是不适合的,推荐使用hierarchical 或meanshift来聚类。第一个缺点可以通过多次聚类取最佳结果来解决。
  Kmeans的计算过程大概表示如下
随机选择k个聚类中心. 最终的类别个数<= k
计算每个样本到各个中心的距离
每个样本聚类到离它最近的中心
重新计算每个新类的中心
重复以上步骤直到满足收敛要求。(通常就是中心点不再改变或满足一定迭代次数).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式