定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围______

定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围______.... 定义在R上的偶函数f(x)在区间[0,+∞)上是单调增函数,若f(1)<f(lnx),则x的取值范围______. 展开
 我来答
渣针悟8128
2014-12-02 · TA获得超过122个赞
知道答主
回答量:120
采纳率:0%
帮助的人:135万
展开全部
①当lnx>0时,因为f(x)在区间[0,+∞)上是单调增函数
所以f(1)<f(lnx)等价于1<lnx,解之得x>e;
②当lnx<0时,-lnx>0,结合函数f(x)是定义在R上的偶函数,
可得f(1)<f(lnx)等价于f(1)<f(-lnx),
再由函数f(x)在区间[0,+∞)上是单调增函数,得到1<-lnx,即lnx<-1,
解之得0<x<
1
e

综上所述,得x的取值范围是x>e或0<x<
1
e

故答案为:(0,
1
e
)∪(e,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式