已知等差数列{a n }的前n项和为S n 且满足a 2 =3,S 6 =36.(1)求数列{a n }的通项公式;(2)若数列{b
已知等差数列{an}的前n项和为Sn且满足a2=3,S6=36.(1)求数列{an}的通项公式;(2)若数列{bn}是等比数列且满足b1+b2=3,b4+b5=24.设数...
已知等差数列{a n }的前n项和为S n 且满足a 2 =3,S 6 =36.(1)求数列{a n }的通项公式;(2)若数列{b n }是等比数列且满足b 1 +b 2 =3,b 4 +b 5 =24.设数列{a n ?b n }的前n项和为T n ,求T n .
展开
1个回答
展开全部
(1)∵数列{a n }是等差数列, ∴S 6 =3(a 1 +a 6 )=3(a 2 +a 5 )=36. ∵a 2 =3,∴a 5 =9,∴3d=a 5 -a 2 =6,∴d=2, 又∵a 1 =a 2 -d=1,∴a n =2n-1. (2)由等比数列{b n }满足b 1 +b 2 =3,b 4 +b 5 =24, 得
∵b 1 +b 2 =3,∴b 1 +b 1 q=3,∴b 1 =1,b n =2 n-1 , ∴a n ?b n =(2n-1)?2 n-1 . ∴T n =1×1+3×2+5×2 2 +…+(2n-3)?2 n-2 +(2n-1)?2 n-1 , 则2T n =1×2+3×2 2 +5×2 3 +…+(2n-3)?2 n-1 +(2n-1)?2 n , 两式相减得(1-2)T n =1×1+2×2+2×2 2 ++2?2 n-2 +2?2 n-1 -(2n-1)?2 n ,即 -T n =1+2(2 1 +2 2 ++22 n-1 )-(2n-1)?2 n =1+2(2 n -2)-(2n-1)?2 n =(3-2n)?2 n -3, ∴T n =(2n-3)?2 n +3. |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询