已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D
已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E.(1)求证:MC?BC=DM?AC;(2)若...
已知:如图,在△ABC中,∠ACB=90°,CM是斜边AB的中线,过点M作CM的垂线与边AC和CB的延长线分别交于点D和点E.(1)求证:MC?BC=DM?AC;(2)若tanA=23,AD=6,求BE的长.
展开
展开全部
(1)证明:∵在△ABC中,∠ACB=90°,CM是斜边AB的中线,
∴CM=AM=BM=
AB,
∴∠A=∠ACM,
∵CM⊥DE,
∴∠CMD=∠ACB=90°,
∴△CDM∽△ABC,
∴MC:AC=DM:BC,
∴MC?BC=DM?AC;
(2)解:∵∠A=∠ACM,tanA=
,
∴在Rt△CDM中,
=
,
∵CM=BM,
∴DM:BM=2:3,
∵∠ACM+∠BCM=∠BCM+∠E=90°,
∴∠ACM=∠E,
∴∠A=∠E,
∵∠AMD=∠EMB,
∴△ADM∽△EBM,
∴AD:BE=DM:BM,
∵AD=6,
∴BE=
×6=9.
∴CM=AM=BM=
1 |
2 |
∴∠A=∠ACM,
∵CM⊥DE,
∴∠CMD=∠ACB=90°,
∴△CDM∽△ABC,
∴MC:AC=DM:BC,
∴MC?BC=DM?AC;
(2)解:∵∠A=∠ACM,tanA=
2 |
3 |
∴在Rt△CDM中,
DM |
CM |
2 |
3 |
∵CM=BM,
∴DM:BM=2:3,
∵∠ACM+∠BCM=∠BCM+∠E=90°,
∴∠ACM=∠E,
∴∠A=∠E,
∵∠AMD=∠EMB,
∴△ADM∽△EBM,
∴AD:BE=DM:BM,
∵AD=6,
∴BE=
3 |
2 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询