已知三角形ABC两边AB,AC(AB不等于AC)的长是关于X的一元二次方程x^2-(2k+1)x+k(k+1)=0的两个实数根
1个回答
展开全部
∵x^2-(2k+1)x+k(k+1)=0
∴﹙x-k﹚[x-﹙k+1﹚]=0
∴x1=k,x2=k+1
∴AB=k,AC=k+1(不妨设AB<AC)
⑴若三角形ABC是以BC为斜边的直角三角形,则BC²=AB²+AC²
∴5²=k²+﹙k+1﹚²=2k²+2k+1即k²+k-12=0
解得k=3或k=﹣4(舍去)
∴k=3时,三角形ABC是以BC为斜边的直角三角形;
⑵若AB=BC=5,则k=5,等腰△ABC的周长=5+6+5=16;
若AC=BC=5,则k=4,等腰△ABC的周长=周长=4+5+5=14;
∴﹙x-k﹚[x-﹙k+1﹚]=0
∴x1=k,x2=k+1
∴AB=k,AC=k+1(不妨设AB<AC)
⑴若三角形ABC是以BC为斜边的直角三角形,则BC²=AB²+AC²
∴5²=k²+﹙k+1﹚²=2k²+2k+1即k²+k-12=0
解得k=3或k=﹣4(舍去)
∴k=3时,三角形ABC是以BC为斜边的直角三角形;
⑵若AB=BC=5,则k=5,等腰△ABC的周长=5+6+5=16;
若AC=BC=5,则k=4,等腰△ABC的周长=周长=4+5+5=14;
追问
已知三角形ABC两边AB,AC(AB不等于AC)的长是关于X的一元二次方程x^2-(2k+1)x+k(k+1)=0的两个实数根,第三边长bc=5,当三角形ABC是等腰时,求三角形的C和S
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询