原题:“如图1,正方形ABCD中,BG是外角∠CBH的角平分线,E是AB上一点(不与A、B重合),EF⊥DE交BG于F,

原题:“如图1,正方形ABCD中,BG是外角∠CBH的角平分线,E是AB上一点(不与A、B重合),EF⊥DE交BG于F,求证:DE=EF.”证明的思路是:在AD上取一点M... 原题:“如图1,正方形ABCD中,BG是外角∠CBH的角平分线,E是AB上一点(不与A、B重合),EF⊥DE交BG于F,求证:DE=EF.”证明的思路是:在AD上取一点M,使AM=AE,连接ME,由AAS可得△DME≌△EBF.阅读了以上材料后,请你解答下列问题:(1)如图2,如果将原题中的条件“正方形”改为“正三角形”,“EF⊥DE”改为“∠DEF=60°”,其它条件不变,原题的结论还成立吗?如果成立请给出正面,如果不成立请给出反例.(2)如果将原题中的条件“正方形”改为“正五边形”,请你模仿原题写出一个真命题,并在图3中画出相应的图形. 展开
 我来答
三朵yd0106
2014-11-14 · 超过67用户采纳过TA的回答
知道答主
回答量:122
采纳率:100%
帮助的人:126万
展开全部
(1)原结论还成立,即DE=EF.
在AD上取一点M,使AM=AE,连接ME,
(1分)∵△ABD是等边三角形,
∵∠A=60°,AM=AE,∴∠AEM=∠AME=60°
∴∠DME=60°+60°=120°,
∵∠DBH=120°,BG平分∠DBH,∴∠EBF=60°+60°=120°,
∴∠DME=∠EBF(3分)
∵∠DEF=60°,
∴∠DAE=∠DEF,
∴∠FEB+∠DEF=∠DAE+∠ADE,
∴∠ADE=∠FEB,(5分)
又∵DM=EB,∴△MDE≌△BEF,∴DE=EF.(6分)


(2)如图,正五边形ABCMN中,E在AB上,F在外角
∠CBH的角平分线上,∠NEF=108°,那么NE=EF.
证明:在AD上取一点M,使AM=AE,连接ME,(1分)
在正五边形ABCMN中,
∵∠A=
5?2
5
×180=108°,AM=AE,∴∠AEM=∠AME=
180?108
2
=36°,
∴∠NME=108°+36°=144°,
∵∠CBH=180-108=72°,BG平分∠CBH,∴∠EBF=108°+36°=144°,
∴∠DME=∠EBF(3分)
∵∠NEF=108°,
∴∠DAE=∠DEF,
∴∠FEB+∠DEF=∠DAE+∠ADE,
∴∠ADE=∠FEB,(5分)
又∵DM=EB,∴△MDE≌△BEF,∴DE=EF.(6分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式