已知函数f(x)=ln(x+1)+ax.(1)当x=0时,函数f(x)取得极大值,求实数a的值;(2)若存在x∈[1,2]

已知函数f(x)=ln(x+1)+ax.(1)当x=0时,函数f(x)取得极大值,求实数a的值;(2)若存在x∈[1,2],使不等式f′(x)≥2x成立,其中f′(x)为... 已知函数f(x)=ln(x+1)+ax.(1)当x=0时,函数f(x)取得极大值,求实数a的值;(2)若存在x∈[1,2],使不等式f′(x)≥2x成立,其中f′(x)为f(x)的导函数,求实数a的取值范围;(3)求函数f(x)的单调区间. 展开
 我来答
啊姗炔
推荐于2016-02-04 · 超过65用户采纳过TA的回答
知道答主
回答量:119
采纳率:0%
帮助的人:154万
展开全部
(1)f′(x)=
1
x+1
+a
由f′(0)=0,得a=-1,此时f′(x)=
1
x+1
-1.
当x∈(-1,0)时,f′(x)>0,函数f(x)在区间(-1,0)上单调递增;
当x∈(0,+∞)时,f′(x)<0,函数f(x)在区间(0,+∞)上单调递减;
∴函数f(x)在x=0处取得极大值,故a=-1.
(2)∵f′(x)≥2x,∴
1
x+1
+a≥2x,∴a≥2x-
1
x+1

令g(x)=2x-
1
x+1
(1≤x≤2),
∴g′(x)=2+
1
(x+1)2
>0,∴g(x)在[1,2]上是增函数,
∴a≥g(1)=
7
2
.存在x∈[1,2],使不等式f′(x)≥2x成立.
(3)f′(x)=
1
x+1
+a.
1
x+1
>0,
∴当a≥0时,f′(x)>0,函数f(x)在(-1,+∞)上是增函数.
当a<0时,令f′(x)=0,x=-
1
a
-1;
若x∈(-1,-
1
a
-1)时,f′(x)>0,
若x∈(-
1
a
-1,+∞)时,f′(x)<0;
综上,当a≥0时,函数f(x)递增区间是(-1,+∞);
当a<0时,函数f(x)递增区间是:(-1,-
1
a
-1),递减区间是:(-
1
a
-1,+∞).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式