如何证明圆内接四边形对角互补
4个回答
展开全部
方法一:直径对应的圆周角为直角
四边形顶点ABCD,圆心O
连接AO延长交圆周于C',连接BC',DC'
AC'是直径,∠ABC'=∠ADC'=90
∠BAD+∠BC'D=180
∠BC'D=∠BCD
(对应相同的圆弧)
∠BAD+∠BCD=180
互补
同理可以证明另两个角
证法二:利用圆心角=圆周角*2
以弧BAD对应的圆心角为∠BOD
∠BCD=1/2*∠BOD
∠BAD=1/2*(360-∠BOD)
∠BAD+∠BCD=180
互补
同理
四边形顶点ABCD,圆心O
连接AO延长交圆周于C',连接BC',DC'
AC'是直径,∠ABC'=∠ADC'=90
∠BAD+∠BC'D=180
∠BC'D=∠BCD
(对应相同的圆弧)
∠BAD+∠BCD=180
互补
同理可以证明另两个角
证法二:利用圆心角=圆周角*2
以弧BAD对应的圆心角为∠BOD
∠BCD=1/2*∠BOD
∠BAD=1/2*(360-∠BOD)
∠BAD+∠BCD=180
互补
同理
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
为什么圆内接四形形的对角互补
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询