已知t∈R,设函数f(x)=x3-3(t+1)2x2+3tx+1.(Ⅰ)若f(x)在(0,2)上无极值,求t的值;(Ⅱ)若存在

已知t∈R,设函数f(x)=x3-3(t+1)2x2+3tx+1.(Ⅰ)若f(x)在(0,2)上无极值,求t的值;(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在... 已知t∈R,设函数f(x)=x3-3(t+1)2x2+3tx+1.(Ⅰ)若f(x)在(0,2)上无极值,求t的值;(Ⅱ)若存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值,求t的取值范围;(Ⅲ)当t=1时,若f(x)≤xex-5x2+5x-m+2(e为自然对数的底数)对任意x∈[0,+∞)恒成立,求m的取值范围. 展开
 我来答
止瑜蓓tg
2014-08-14 · TA获得超过117个赞
知道答主
回答量:104
采纳率:100%
帮助的人:111万
展开全部
(Ⅰ)∵f(x)=x3-
3(t+1)
2
x2+3tx+1,
∴f′(x)=3(x-1)(x-t),
又f(x)在(0,2)上无极值,∴t=1;                 …(3分)
(Ⅱ)①当t≤0时,f(x)在(0,1)单调递减,在(1,2)单调递增,
∴f(x)在[0,2]的最小值为f(1)=
1
2
+
3
2
t;
②当0<t<1时,f(x)在(0,t)单调递增,在(t,1)单调递减,在(1,2)单调递增,
∴f(1)≤f(0)或f(t)≥f(2)
由f(t)≥f(2)得:-t3+3t2≥4在0<t<1时无解
f(1)≤f(0)
0<t<1
,∴0<t≤
1
3
; 
③当t=1时,不合题意;
④当1<t<2时,f(x)在(0,1)单调递增,在(1,t)单调递减,在(t,2)单调递增,
f(1)≥f(2)
1<t<2
f(t)≤f(0)
1<t<2

1
2
+
3
2
t≥3
1<t<2
?
1
2
t3+
3
2
t2+1≤1
1<t<2

5
3
≤t<2
或3≤t(舍去)
⑤当t≥2时,f(x)在(0,1)单调递增,在(1,2)单调递减,
f(x)max=f(1)=
1
2
+
3
2
t

综上:t∈(-∞,
1
3
]∪[
5
3
,+∞)时,存在x0∈(0,2),使得f(x0)是f(x)在[0,2]上的最值.…(8分)
(Ⅲ)当t=1时,若f(x)≤xex-5x2+5x-m+2对任意x∈[0,+∞)恒成立,即x3-3x2+3x+1≤xex-5x2+5x-m+2对任意x∈[0,+∞)恒成立,∴m≤xex-x3-2x2+2x+1,
即m≤x(ex-x2-2x+2)+1对任意x∈[0,+∞)恒成立
令g(x)=ex-x2-2x+2,x∈[0,+∞)
∵g'(x)=ex-2x-2,若g'(x)=ex0?2x0?2=0,即gx0=2x0+2
则0<x0<2,∴g(x)min=g(x0)=ex0
?x
2
0
?2x0+2
=2x0+2
?x
2
0
?2x0+2
=4-
x
2
0
>0,
∴xg(x)≥0,∴xg(x)+1≥1,∴m≤1.…(14分)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式