几道高数求极限题目,求解

一共有三道,3.26的第一题,3.36,3.13的6和8,这几道题怎么做?... 一共有三道,3.26的第一题,3.36,3.13的6和8,这几道题怎么做? 展开
 我来答
妥当又随和丶不倒翁1756
2014-11-11 · TA获得超过162个赞
知道答主
回答量:122
采纳率:0%
帮助的人:178万
展开全部
1、分子有理化:
lim[x→∞] [√(x²+x)-√(x²+1)]
=lim[x→∞] [√(x²+x)-√(x²+1)][√(x²+x)+√(x²+1)]/[√(x²+x)+√(x²+1)]
=lim[x→∞] [(x²+x)-(x²+1)]/[√(x²+x)+√(x²+1)]
=lim[x→∞] (x-1)/[√(x²+x)+√(x²+1)]
下面分正负无穷讨论:
当x→+∞时
分子分母同除以x
原式=lim[x→+∞] (1-1/x)/[√(1+1/x)+√(1+1/x²)]=1/2
当x→-∞时
分子分母同除以x
原式=lim[x→+∞] (1-1/x)/[-√(1+1/x)-√(1+1/x²)]=-1/2
因此当x→∞时,极限不存在

2、令√x=u,则原极限化为:
原式=lim[u→1] (u^4-u)/(u-1)
=lim[u→1] u(u-1)(u²+u+1)/(u-1)
=lim[u→1] u(u²+u+1)
=3

3、分左右极限讨论
lim[x→0+] [2^(1/x)-1]/[2^(1/x)+1]
=lim[x→0+] [1-2^(-1/x)]/[1+2^(-1/x)] 此时1/x→+∞,2^(1/x)→+∞,2^(-1/x)→0
=1
lim[x→0-] [2^(1/x)-1]/[2^(1/x)+1]=-1 此时1/x→-∞,2^(1/x)→0
由于左右极限不同,因此原极限不存在。

4、lim[x→a] (cosx-cosa)/(x-a)
和角公式
=lim[x→a] (cosx-cosa)/(x-a)
=lim[x→a] -2sin[(x+a)/2]sin[(x-a)/2]/(x-a)
等价无穷小代换
=lim[x→a] -2sin[(x+a)/2][(x-a)/2]/(x-a)
=lim[x→a] -sin[(x+a)/2]
=-sina

希望可以帮到你,不明白可以追问,如果解决了问题,请点下面的"选为满意回答"按钮。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式