如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点... 如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm.D、E分别为边AB、BC的中点,连接DE.点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在线段AD上以5cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M在线段AQ上.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为______cm(用含t的代数式表示).(2)当点N落在AB边上时,求t的值.(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.(4)连接CD,当点N与点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中点处,直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围. 展开
 我来答
手机用户59765
2014-12-10 · TA获得超过174个赞
知道答主
回答量:112
采纳率:0%
帮助的人:134万
展开全部
(1)∵在Rt△ABC中,AC=8cm,BC=4cm,
∴AB=
AC2+BC2
=
82+42
=4
5

D为AB中点,∴AD=2
5

∴点P在AD段的运动时间为
2
5
5
=2s.
当点P在线段DE上运动时,DP段的运动时间为(t-2)s,
∵DE段运动速度为1cm/s,∴DP=(t-2)cm.

(2)当点N落在AB边上时,有两种情况,如下图所示:

①如图(2)a,此时点D与点N重合,P位于线段DE上.
由三角形中位线定理可知,DM=
1
2
BC=2,∴DP=DM=2.
由(1)知,DP=t-2,∴t-2=2,∴t=4;
②如图(2)b,此时点P位于线段EB上.
∵DE=
1
2
AC=4,∴点P在DE段的运动时间为4s,
∴PE=t-6,∴PB=BE-PE=8-t,PC=PE+CE=t-4.
∵PN∥AC,∴PN:PB=AC:BC=2,∴PN=2PB=16-2t.
由PN=PC,得16-2t=t-4,解得t=
20
3

所以,当点N落在AB边上时,t=4或t=
20
3


(3)当正方形PQMN与△ABC重叠部分图形为五边形时,有两种情况,如下图所示:
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式