(2011?浙江)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明

(2011?浙江)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知BC=8,PO=4,A... (2011?浙江)如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上.(Ⅰ)证明:AP⊥BC;(Ⅱ)已知BC=8,PO=4,AO=3,OD=2.求二面角B-AP-C的大小. 展开
 我来答
名成教育17
推荐于2016-01-07 · TA获得超过5486个赞
知道小有建树答主
回答量:268
采纳率:0%
帮助的人:71.3万
展开全部
解:(I)由题意画出图如下:
由AB=AC,D为BC的中点,得AD⊥BC,
又PO⊥平面ABC,垂足O落在线段AD上,得到PO⊥BC,
∵PO∩AD=O∴BC⊥平面PAD,故BC⊥PA.
(II)如图,在平面PAB中作BM⊥PA于M,连接CM,
∵BC⊥PA,∴PA⊥平面BMC,∴AP⊥CM,故∠BMC为二面角B-AP-C的平面角,
在直角三角形ADB中,AB2AD2+BD2=41 得:AB=
41

在直角三角形POD中,PD2=PO2+OD2,在直角三角形PDB中,PB2=PD2+BD2,∴PB2=PO2+OD2+BD2=36,得PB=6,
在直角三角形POA中,PA2=AO2+OP2=25,得PA=5,
又cos∠BPA=
PA2+PB2?AB2
2PA?PB
1
3
,从而sin∠BPA=
2
2
3

故BM=PBsin∠BPA=4
2
.同理:CM=4
2

∵BM2+MC2=BC2,∴二面角B-AP-C的大小为90°.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式