定义在R上的函数f(x)满足:f(-x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+12≥f(1-x)+x

定义在R上的函数f(x)满足:f(-x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+12≥f(1-x)+x的解集为______.... 定义在R上的函数f(x)满足:f(-x)+f(x)=x2,当x<0时,f′(x)<x,则不等式f(x)+12≥f(1-x)+x的解集为______. 展开
 我来答
二次元725
推荐于2016-12-01 · 超过59用户采纳过TA的回答
知道答主
回答量:117
采纳率:0%
帮助的人:144万
展开全部
∵定义在R上的函数f(x)满足:
f(-x)+f(x)=x2
两边对x求导,得-f′(-x)+f′(x)=2x,
∴f′(x)=f′(-x)+2x,
令x>0,则-x<0,
∵当x<0时,f′(x)<x,
∴f′(-x)<-x,
∴f′(x)<2x-x,即f′(x)<x,
又f(0)=0,直线y=x过原点,
∴f′(0)≤0,
∴x∈R,都有f′(x)<x,
令F(x)=f(x)+
1
2
-f(1-x)-x,则
F′(x)=f′(x)+f′(1-x)-1<x+1-x-1=0,
即F(x)是R上的单调减函数,且F(
1
2
)=0,
∴不等式f(x)+
1
2
≥f(1-x)+x,
即F(x)≥0,即F(x)≥F(
1
2
),
∴x
1
2

∴原不等式的解集为(-∞,
1
2
].
故答案为:(-∞,
1
2
].
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式