同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,我们过点P作AB
同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,我们过点P作AB、CD的平行线PE,则有AB∥CD∥PE,故∠B=∠BPE...
同一平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,我们过点P作AB、CD的平行线PE,则有AB∥CD∥PE,故∠B=∠BPE,∠D=∠DPE,故∠BPE=∠BPD+∠DPE,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,利用(1)中的结论(可以直接套用)求∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(3)设BF交AC于点P,AE交DF于点Q.已知∠APB=130°,∠AQF=110°,利用(2)的结论直接写出∠B+∠E+∠F的度数为______度,∠A比∠F大______度.
展开
1个回答
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询