如图,已知在四棱锥PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点

如图,已知在四棱锥PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)判断并说明P... 如图,已知在四棱锥PABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E,F分别是线段AB,BC的中点.(1)证明:PF⊥FD;(2)判断并说明PA上是否存在点G,使得EG∥平面PFD. 展开
 我来答
dwd21___0015
推荐于2017-10-14 · 超过58用户采纳过TA的回答
知道答主
回答量:118
采纳率:0%
帮助的人:123万
展开全部
(1)连接AF,∵底面ABCD是矩形,AD=2,AB=1,F分别是线段BC的中点,
∴AF=DF=
2

∴AF2+DF2=AD2,∴AF⊥DF,
又PA⊥平面ABCD,DF?平面ABCD,∴PA⊥DF,
又PA∩AF=A,∴DF⊥平面PAF,PF?平面PAF,
∴PF⊥FD;
(2)取AD的中点O,连接OB,
则OB∥FD,过点E作EH∥FD交AD于点H,
则EH∥平面PFD,
∵E为AB的中点,
∴AH=
1
4
AD,再过点H作HG∥DP交PA于点G,则HG∥平面PFD且AG=
1
4
AP,
又GH∩EH=H,∴平面GEH∥平面PFD,
∵EG?平面GEH,
∴EG∥平面PFD.从而确定G点位置;
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式