大一的高数题目,求不定积分,求解答,谢谢啦
1个回答
展开全部
令x=t^6,则
原式=∫[t^3/(1-t^2)]6t^5dt=6∫[(t^8-1+1)/(1-t^2)]dt
=-6∫[((t^2-1)(t^6+t^4+t^2+1)+1)/(t^2-1)]dt
=-6∫[t^6+t^4+t^2+1+(1/(t^2-1))]dt
=-6[t^7/7+t^5/5+t^3/3+t+(1/2)ln(t-1)/(t+1)]+C
=-(6/7)x^(7/6)-(6/5)x^(5/6)-2x^(1/2)-6x^(1/6)-3ln(x^(1/6)-1)/(x^(1/6)+1) +C
原式=∫[t^3/(1-t^2)]6t^5dt=6∫[(t^8-1+1)/(1-t^2)]dt
=-6∫[((t^2-1)(t^6+t^4+t^2+1)+1)/(t^2-1)]dt
=-6∫[t^6+t^4+t^2+1+(1/(t^2-1))]dt
=-6[t^7/7+t^5/5+t^3/3+t+(1/2)ln(t-1)/(t+1)]+C
=-(6/7)x^(7/6)-(6/5)x^(5/6)-2x^(1/2)-6x^(1/6)-3ln(x^(1/6)-1)/(x^(1/6)+1) +C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询