判断级数的敛散性,题目如图

 我来答
langzi82561
推荐于2017-11-15 · TA获得超过434个赞
知道小有建树答主
回答量:403
采纳率:100%
帮助的人:132万
展开全部

收敛,我证明出来了,但是否有未考虑到的地方还请各位老师指正。证明过程如下图:

追问
交错级数'Un单调递减是它收敛的充分条件吧,应该不能那样用
追答
请指正!
武义菲亚伏电子有限公司
2023-06-12 广告
500kv 23个;330kv 16个;220kv 9个;110kv 5个;这是最少个数,实际会多一两个。 绝缘子是安装在不同电位的导体之间或导体与地电位构件之间的器件,能够耐受电压和机械应力作用。武义菲亚伏电子有限公司位于武义县东南工业园... 点击进入详情页
本回答由武义菲亚伏电子有限公司提供
百度网友8362f66
2017-11-15 · TA获得超过8.3万个赞
知道大有可为答主
回答量:8690
采纳率:83%
帮助的人:3397万
展开全部
解:∵n=1,2,……,∞时,∑[(-1)^(n-1)]un=∑[(-1)^(2k-2)]u(2k-1)+∑[(-1)^(2k-1)]u(2k)(k=1,2,……,∞),即n为奇数和偶数后的变形,
∴∑[(-1)^(n-1)]un=∑u(2k-1)-∑u(2k)=∑u(2n-1)-∑u(2n)。
又,由题设条件,∑[(-1)^(n-1)]un绝对收敛,∴级数∑u(2n-1)、∑u(2n均收敛。
而,lim(n→∞)n^(1/n)=e^[lim(n→∞)(lnn)/n]=e^0=1,∴级数∑[n^(1/n)]u(2n-1)与∑u(2n-1)有相同的敛散性。
∴级数∑[n^(1/n)]u(2n-1)收敛。
供参考。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
BigWhiteMouse
2016-04-23 · TA获得超过4775个赞
知道大有可为答主
回答量:7298
采纳率:42%
帮助的人:3273万
展开全部
绝对收敛,
追答
因为n^(1/n)趋近于1,所以n足够打时,
n^(1/n)<2,
后面就简单了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式