判断级数的敛散性,题目如图
3个回答
武义菲亚伏电子有限公司
2023-06-12 广告
2023-06-12 广告
500kv 23个;330kv 16个;220kv 9个;110kv 5个;这是最少个数,实际会多一两个。 绝缘子是安装在不同电位的导体之间或导体与地电位构件之间的器件,能够耐受电压和机械应力作用。武义菲亚伏电子有限公司位于武义县东南工业园...
点击进入详情页
本回答由武义菲亚伏电子有限公司提供
展开全部
解:∵n=1,2,……,∞时,∑[(-1)^(n-1)]un=∑[(-1)^(2k-2)]u(2k-1)+∑[(-1)^(2k-1)]u(2k)(k=1,2,……,∞),即n为奇数和偶数后的变形,
∴∑[(-1)^(n-1)]un=∑u(2k-1)-∑u(2k)=∑u(2n-1)-∑u(2n)。
又,由题设条件,∑[(-1)^(n-1)]un绝对收敛,∴级数∑u(2n-1)、∑u(2n均收敛。
而,lim(n→∞)n^(1/n)=e^[lim(n→∞)(lnn)/n]=e^0=1,∴级数∑[n^(1/n)]u(2n-1)与∑u(2n-1)有相同的敛散性。
∴级数∑[n^(1/n)]u(2n-1)收敛。
供参考。
∴∑[(-1)^(n-1)]un=∑u(2k-1)-∑u(2k)=∑u(2n-1)-∑u(2n)。
又,由题设条件,∑[(-1)^(n-1)]un绝对收敛,∴级数∑u(2n-1)、∑u(2n均收敛。
而,lim(n→∞)n^(1/n)=e^[lim(n→∞)(lnn)/n]=e^0=1,∴级数∑[n^(1/n)]u(2n-1)与∑u(2n-1)有相同的敛散性。
∴级数∑[n^(1/n)]u(2n-1)收敛。
供参考。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
绝对收敛,
追答
因为n^(1/n)趋近于1,所以n足够打时,
n^(1/n)<2,
后面就简单了
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询