高中数学,三角函数,两道大题,
3个回答
展开全部
五:积化成和差,在合并成一个正弦或余弦函数,根据正弦余弦函数的极值进行求解;也可以使用导数=0的办法求解。
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
后式-前式:
cos(α-β)-cos(α+β)=2sinαsinβ
sinαsinβ=(1/2)[cos(α-β)-cos(α+β)]
根据这个公式:
y=(1/2)[cos(2π/3)-cos2x]
=(1/2)(-1/2)-(1/2)cos2x
=-1/4-(1/2)cos2x
最大值cos2x=-1
y=-1/4+(1/2)=1/4
最小值cos2x=1
y=-1/4-(1/2)=-3/4
周期:
2x:周期2π,
x:周期π
y'=cos(x-π/3)sin(x+π/3)+sin(x-π/3)cos(x+π/3)
=sin2x
2x=kπ,x=kπ/2,是,y'=0,y有极值;
y=sin(kπ/2-π/3)sin(kπ/2+π/3)
k是偶数,
y=-sin(π/3)sin(π/3)=-3/4,极小值
k是奇数:
y=cos(π/3)cos(π/3)=1/4,极大值
周期:极值点之间是半个周期,π/2,因此周期=π。
也可以冲相邻两个极大值或极小值点之间为一个周期,推得周期我2×π/2,π
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
后式-前式:
cos(α-β)-cos(α+β)=2sinαsinβ
sinαsinβ=(1/2)[cos(α-β)-cos(α+β)]
根据这个公式:
y=(1/2)[cos(2π/3)-cos2x]
=(1/2)(-1/2)-(1/2)cos2x
=-1/4-(1/2)cos2x
最大值cos2x=-1
y=-1/4+(1/2)=1/4
最小值cos2x=1
y=-1/4-(1/2)=-3/4
周期:
2x:周期2π,
x:周期π
y'=cos(x-π/3)sin(x+π/3)+sin(x-π/3)cos(x+π/3)
=sin2x
2x=kπ,x=kπ/2,是,y'=0,y有极值;
y=sin(kπ/2-π/3)sin(kπ/2+π/3)
k是偶数,
y=-sin(π/3)sin(π/3)=-3/4,极小值
k是奇数:
y=cos(π/3)cos(π/3)=1/4,极大值
周期:极值点之间是半个周期,π/2,因此周期=π。
也可以冲相邻两个极大值或极小值点之间为一个周期,推得周期我2×π/2,π
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
五、
y=sin(x-π/3)sin(x+π/3)
=-½[cos(x- π/3+x +π/3)-cos(x-π/3-x-π/3)]
=-½[cos(2x)-cos(-2π/3)]
=-½[cos(2x)-(-½)]
=-½cos(2x)-½
最小正周期T=2π/2=π
cos(2x)=-1时,y取得最大值ymax=0
cos(2x)=1时,y取得最小值ymin=-1
六、
证:
(1-cosx+sinx)/(1+cosx+sinx)
=[2sin²(x/2)+2sin(x/2)cos(x/2)]/[2cos²(x/2) +2sin(x/2)cos(x/2)]
=[tan²(x/2)+tan(x/2)]/[1+tan(x/2)]
=tan(x/2)[tan(x/2)+1]/[1+tan(x/2)]
=tan(x/2)
tan(x/2)=(1-cosx+sinx)/(1+cosx+sinx)
y=sin(x-π/3)sin(x+π/3)
=-½[cos(x- π/3+x +π/3)-cos(x-π/3-x-π/3)]
=-½[cos(2x)-cos(-2π/3)]
=-½[cos(2x)-(-½)]
=-½cos(2x)-½
最小正周期T=2π/2=π
cos(2x)=-1时,y取得最大值ymax=0
cos(2x)=1时,y取得最小值ymin=-1
六、
证:
(1-cosx+sinx)/(1+cosx+sinx)
=[2sin²(x/2)+2sin(x/2)cos(x/2)]/[2cos²(x/2) +2sin(x/2)cos(x/2)]
=[tan²(x/2)+tan(x/2)]/[1+tan(x/2)]
=tan(x/2)[tan(x/2)+1]/[1+tan(x/2)]
=tan(x/2)
tan(x/2)=(1-cosx+sinx)/(1+cosx+sinx)
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
你去试着下个百度作业帮,拍题搜答案
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询