高等数学:求微分方程通解,

 我来答
晴天摆渡
2018-12-28 · 我用知识搭建高梯,拯救那些挂在高树上的人
晴天摆渡
采纳数:9800 获赞数:14621

向TA提问 私信TA
展开全部
令√[(1-y)/(1-x)] =u
则(1-y)/(1-x) =u²
得y=1+(x-1)u²
则y'=u²+2uu'(x-1)
代入原方程得
u²+2uu'(x-1)=u
若u=0,则得到方程的一个解y=1
若u≠0,则u+2u'(x-1)=1,
即2du/(u-1)+dx/(x-1)=0
2ln|u-1| + ln|x-1|+ln|C|
(u-1)²(x-1)=C

{√[(1-y)/(1-x)]-1}²(x-1)=C
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
fanglva
2018-12-28 · TA获得超过3.4万个赞
知道大有可为答主
回答量:2.2万
采纳率:87%
帮助的人:5489万
展开全部


解答如图

本回答被提问者采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式