如何判断函数的敛散性

 我来答
管罡00l

2020-12-07 · TA获得超过1.1万个赞
知道大有可为答主
回答量:1.2万
采纳率:41%
帮助的人:262万
展开全部
一、判定正项级数的敛散性
  1.先看当n趋向于无穷大时,级数的通项是否趋向于零(如果不易看出,可跳过这一步).若不趋于零,则级数发散;若趋于零,则
  2.再看级数是否为几何级数或p级数,因为这两种级数的敛散性是已知的,如果不是几何级数或p级数,则
  3.用比值判别法或根值判别法进行判别,如果两判别法均失效,则
  4.再用比较判别法或其极限形式进行判别,用比较判别法判别,一般应根据通项特点猜测其敛散性,然后再找出作为比较的级数,常用来作为比较的级数主要有几何级数和p级数等.
  二、判定交错级数的敛散性
  1.利用莱布尼茨判别法进行分析判定.
  2.利用绝对级数与原级数之间的关系进行判定.
  3.一般情况下,若级数发散,级数未必发散;但是如果用比值法或根值法判别出绝对级数发散,则级数必发散.
  4.有时可把级数通项拆分成两个,利用“收敛+发散=发散”“收敛+收敛=收敛”判定.
  三、求幂级数的收敛半径、收敛区间和收敛域
  1.若级数幂次是按x的自然数顺序递增,则其收敛半径由或求出,进而可以写出收敛区间,再考虑区间端点处数项级数的敛散性可得幂级数的收敛域.
  2.对于缺项幂级数或x的函数的幂级数,可根据比值判别法求收敛半径,也可作代换,换成t的幂级数,再求收敛半径.
  四、求幂级数的和函数与数项级数的和
  1.求幂级数的和函数主要先通过幂级数的代数运算、逐项微分、逐项积分等性质将其化为几何级数的形式,再求和.
  2.求数项级数的和,可利用定义求出部分和,再求极限;或转化为幂级数的和函数在某点的函数值.
  五、将函数展开为傅里叶级数
  将函数展开为傅里叶级数时需根据已有公式求出傅里叶系数,这时可根据函数的奇偶性简化系数的计算,然后再根据收敛性定理写出函数与其傅里叶级数之间的关系.
雷帝乡乡

2019-03-21 · TA获得超过3739个赞
知道大有可为答主
回答量:4707
采纳率:74%
帮助的人:1645万
展开全部



这是分析过程

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
无私又洒脱灬百花718
2019-03-21 · TA获得超过7009个赞
知道大有可为答主
回答量:8743
采纳率:39%
帮助的人:411万
展开全部
=Σ[(1/2)^(n-1)+(-1/2)^n]=Σ(1/2)^(n-1)+Σ(-1/2)^n 两个公比为绝对值小于1大于0的等比数列无穷项之和,都是已知收敛的,因此两者之和也是收敛的。 =1/(1-1/2)+(-1/2)/(1+1/2)=2-1/3=5/3
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式