已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2*a3=45,a1+a4=14
2个回答
展开全部
因为是等差数列,
所以,a1+a4=a3+a2=14
所以a3=14-a2,
将a3=14-a2代入a2a3=45得
(14-a2)*a2=45
a2^2-14a2+45=0
(a2-5)(a2-9)=0
a2=5或a2=9
a3=14-a2=14-5=9或a3=14-a2=14-9=5
d=a3-a2=9-5=4或d=a3-a2=5-9=-4(公差d>0,舍去)
所以,d=4
a1=a2-d=5-4=1
an=1+(n-1)*4=4n-3
(2)sn=n(a1+an)/2
Bn=Sn/(n+c)
Bn=n(a1+an)/[2(n+c)]
b1=1/(2+2c)
b2=2(1+5)/[2(2+c)]=6/(2+c)
b3=3(1+9)/[2(3+c)]=15/(3+c)
2b2=b1+b3
2*6/(2+c)=15/(3+c)+1/(2+2c)
12/(2+c)=15/(3+c)+1/(2+2c)
所以,a1+a4=a3+a2=14
所以a3=14-a2,
将a3=14-a2代入a2a3=45得
(14-a2)*a2=45
a2^2-14a2+45=0
(a2-5)(a2-9)=0
a2=5或a2=9
a3=14-a2=14-5=9或a3=14-a2=14-9=5
d=a3-a2=9-5=4或d=a3-a2=5-9=-4(公差d>0,舍去)
所以,d=4
a1=a2-d=5-4=1
an=1+(n-1)*4=4n-3
(2)sn=n(a1+an)/2
Bn=Sn/(n+c)
Bn=n(a1+an)/[2(n+c)]
b1=1/(2+2c)
b2=2(1+5)/[2(2+c)]=6/(2+c)
b3=3(1+9)/[2(3+c)]=15/(3+c)
2b2=b1+b3
2*6/(2+c)=15/(3+c)+1/(2+2c)
12/(2+c)=15/(3+c)+1/(2+2c)
展开全部
1、
略
2、
a(n+1)=4n+1
bn=1/4*4/(4n-3)(4n+1)
=1/4*[(4n+1)-(4n-3)]/[(4n-3)(4n+1)]
=1/4*{(4n+1)/[(4n-3)(4n+1)]-(4n-3)/[(4n-3)(4n+1)]}
=1/4*[1/(4n-3)-1/(4n+1)]
所以Sn=1/4*[1/1-1/5+1/5-1/9+1/9-1/13+……+1/(4n-3)-1/(4n+1)]
==1/4*[1-1/(4n+1)]
=n/(4n+1)
略
2、
a(n+1)=4n+1
bn=1/4*4/(4n-3)(4n+1)
=1/4*[(4n+1)-(4n-3)]/[(4n-3)(4n+1)]
=1/4*{(4n+1)/[(4n-3)(4n+1)]-(4n-3)/[(4n-3)(4n+1)]}
=1/4*[1/(4n-3)-1/(4n+1)]
所以Sn=1/4*[1/1-1/5+1/5-1/9+1/9-1/13+……+1/(4n-3)-1/(4n+1)]
==1/4*[1-1/(4n+1)]
=n/(4n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询