鸡兔同笼二元一次方程解法
1个回答
展开全部
一、鸡兔同笼类问题:
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
图(1)
2、《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣,其中下卷第31题“雉兔同笼”流传尤为广泛。
图(2)
以绳测井 :若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?
图(3)
二、列方程组解决实际问题步骤:
(1)明确题意,并将所给的问题转化为数学模型。
(2)找出题目中的已知量和未知量,明确它们之间的关系。
(3)设出未知数,列出方程组并求解。
三、典型例题:
例题1、已知长江比黄河长836 km,黄河长度的6倍比长江长度的5倍多1284 km。
设长江、黄河的长分别是x km,y km,则下列方程组中正确的是( C )
例题1图(4)
例题2、李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,
乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
解:设李大叔去年甲种蔬菜种植了x亩,乙种蔬菜种植了y亩;
例题2图(5)
答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩。
例题3、
例题3图(6)
例题4、
例题4图(7)
解答过程:
例题4解答过程(8)
例题5、
例题5图(9)
解答过程:
例题5解答过程(10)
例题5解答过程(11)
四、总结:
1、列方程(或方程组)解决实际问题,关键是找出题目中的等量关系。
2、列二元一次方程组解应用题的一般步骤是:
①审:审题,弄清题意和题目中的数量关系,并找出题中两个等量关系;
②设:用字母表示题中的两个未知数;
③列:根据已找出的每个等量关系列出方程,并组成方程组;
④解:解所列的方程组(用代入消元法或加减消元法),求出未知数的值。
1、今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?
图(1)
2、《孙子算经》是我国古代一部较为普及的算书,许多问题浅显有趣,其中下卷第31题“雉兔同笼”流传尤为广泛。
图(2)
以绳测井 :若将绳三折测之,绳多五尺;若将绳四折测之,绳多一尺.绳长、井深各几何?
图(3)
二、列方程组解决实际问题步骤:
(1)明确题意,并将所给的问题转化为数学模型。
(2)找出题目中的已知量和未知量,明确它们之间的关系。
(3)设出未知数,列出方程组并求解。
三、典型例题:
例题1、已知长江比黄河长836 km,黄河长度的6倍比长江长度的5倍多1284 km。
设长江、黄河的长分别是x km,y km,则下列方程组中正确的是( C )
例题1图(4)
例题2、李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18000元,其中甲种蔬菜每亩获利2000元,
乙种蔬菜每亩获利1500元,李大叔去年甲、乙两种蔬菜各种植了多少亩?
解:设李大叔去年甲种蔬菜种植了x亩,乙种蔬菜种植了y亩;
例题2图(5)
答:李大叔去年甲种蔬菜种植了6亩,乙种蔬菜种植了4亩。
例题3、
例题3图(6)
例题4、
例题4图(7)
解答过程:
例题4解答过程(8)
例题5、
例题5图(9)
解答过程:
例题5解答过程(10)
例题5解答过程(11)
四、总结:
1、列方程(或方程组)解决实际问题,关键是找出题目中的等量关系。
2、列二元一次方程组解应用题的一般步骤是:
①审:审题,弄清题意和题目中的数量关系,并找出题中两个等量关系;
②设:用字母表示题中的两个未知数;
③列:根据已找出的每个等量关系列出方程,并组成方程组;
④解:解所列的方程组(用代入消元法或加减消元法),求出未知数的值。
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询