这道微分方程变换后的常数为什么是正的?算了好几遍,没有计算错误啊?
x=cost
dx/dt=-sint
y'= dy/dx=(dy/dt) /(dx/dt) = -(dy/dt) / sint
d/dt(y') = (dy/dt) cost / (sint)^2 - d^2y/dt^2/sint
y''
=d/dt(y') / (dx/dt)
=-(dy/dt) cost / (sint)^3 + d^2y/dt^2/(sint)^2
(1-x^2)y''-xy' +y =0
(sint)^2.[-(dy/dt) cost / (sint)^3 + d^2y/dt^2/(sint)^2] - cost [ -(dy/dt) / sint] + y=0
d^2y/dt^2 + y=0
The aux. equation
p^2 +1=0
p=i or -i
y = Acost + Bsint
y|x=0 = 1
x=cost
x=0, t=π/2
y = Acost + Bsint
1= 0 + B
B=1
//
y'|x=0 =2
y = Acost + Bsint
dy/dx =A(-sint) /(dx/dt) + Bcost/ (dx/dt)
=A -B(cost/sint)
2=A
ie
y = 2cost + sint
y =2x+ √(1-x^2)
2023-06-12 广告