谁能详细解释一下导数中的切线方程与法线方程
书上说Y-Y0=f'(X0)(X-X0).其中f'(X0)是曲线Y=f(X)上在点(X0,f(X0))处切线的斜率.还有法线方程(太复杂了,所以不输出来了)谁能解释一下X...
书上说 Y-Y0=f'(X0)(X-X0) .其中f'(X0) 是曲线Y=f(X) 上在点(X0,f(X0))处切线的斜率.
还有法线方程(太复杂了,所以不输出来了)
谁能解释一下X和Y是什么?为什么这个等式成立?
f'( )中的确是X0 .我没有抄错,除非书上打错了... 展开
还有法线方程(太复杂了,所以不输出来了)
谁能解释一下X和Y是什么?为什么这个等式成立?
f'( )中的确是X0 .我没有抄错,除非书上打错了... 展开
2个回答
展开全部
函数 y=f(x)
其图象上有一点 设为a(x0 , y0)
过点a(x0 , y0)在曲线y=f(x)的斜率是函数y=f(x)在a(x0 , y0)处的导数即f'(X0).
1)首先 我们回忆一下初中的知识 怎样确定一条直线
可以用"点斜式"---y=kx+b
如果知道斜率k 和一点(x0 ,y0)将k,(x0 ,y0)代入y=kx+b
就可以求出b ,b=y0-x0
就知道了这条直线的方程了:y=kx+y0-x0
2)切线方程的求法:
已知切线方程的斜率:f'(xo)
又知切线也过(x0,y0)点:即过(x0 , y0)
这样由1)的方法 可以得到:
切线方程为 y=f'(xo)x+y0-f'(xo)x0
即y-y0=f'(xo)(x-x0)
3)法线方程的求法:
已知法线和切线是垂直的,故法线方程的斜率为:-1/f'(xo)[这里用到高中知识相互垂直的直线 其斜率乘积为-1]
又知过一点(x0 , y0)
由1)的方法可得法线方程,略.
其图象上有一点 设为a(x0 , y0)
过点a(x0 , y0)在曲线y=f(x)的斜率是函数y=f(x)在a(x0 , y0)处的导数即f'(X0).
1)首先 我们回忆一下初中的知识 怎样确定一条直线
可以用"点斜式"---y=kx+b
如果知道斜率k 和一点(x0 ,y0)将k,(x0 ,y0)代入y=kx+b
就可以求出b ,b=y0-x0
就知道了这条直线的方程了:y=kx+y0-x0
2)切线方程的求法:
已知切线方程的斜率:f'(xo)
又知切线也过(x0,y0)点:即过(x0 , y0)
这样由1)的方法 可以得到:
切线方程为 y=f'(xo)x+y0-f'(xo)x0
即y-y0=f'(xo)(x-x0)
3)法线方程的求法:
已知法线和切线是垂直的,故法线方程的斜率为:-1/f'(xo)[这里用到高中知识相互垂直的直线 其斜率乘积为-1]
又知过一点(x0 , y0)
由1)的方法可得法线方程,略.
呈绅
2024-11-24 广告
2024-11-24 广告
上机1350外圆磨,即MM1350系列精密外圆磨床,是我司热销产品之一。它适用于磨削IT6IT7级精度的圆柱形回转工件的外圆表面,特别适用于单件小批生产的场合。机床工作台纵向移动可由液压无级变速传动或手轮传动,砂轮架横向进给灵活,工件、砂轮...
点击进入详情页
本回答由呈绅提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |