sin+cos等于1吗?
sin+cos不等于1,是大于1。
因为0<a<90°
则
(sina+cosa)^2
=sin2a+cos2a+2sinacosa
=1+2sinacosa
>1
所以(sina+cosa)^2>1
从而得sina+cosa>1
相关公式:
积的关系:
sinα = tanα × cosα(即sinα / cosα = tanα )
cosα = cotα × sinα (即cosα / sinα = cotα)
tanα = sinα × secα (即 tanα / sinα = secα)
倒数关系:
tanα × cotα = 1
sinα × cscα = 1
cosα × secα = 1
不对。
因为0<a<90°
则(sina+cosa)2=sin2a+cos2a+2sinacosa=1+2sinacosa>1
所以(sina+cosa)2>1
从而得sina+cosa>1
三角函数公式:
一、倍角公式
1、Sin2A=2SinA*CosA
2、Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1
3、tan2A=(2tanA)/(1-tanA^2)
二、降幂公式
1、sin^2(α)=(1-cos(2α))/2=versin(2α)/2
2、2cos^2(α)=(1+cos(2α))/2=covers(2α)/2
3、tan^2(α)=(1-cos(2α))/(1+cos(2α))
三、推导公式
1、1tanα+cotα=2/sin2α
2、tanα-cotα=-2cot2α
3、1+cos2α=2cos^2α
4、、4-cos2α=2sin^2α
5、1+sinα=(sinα/2+cosα/2)^2=2sina(1-sin2a)+(1-2sin2a)sina
四、两角和差
1、1cos(α+β)=cosα·cosβ-sinα·sinβ
2、cos(α-β)=cosα·cosβ+sinα·sinβ
3、sin(α±β)=sinα·cosβ±cosα·sinβ
4、4tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)
5、tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)