已知实数满足x,y满足x^2+y^2=9(y>=0),则m=y+3/x+1的取值范围是
展开全部
本题完全是考查数形结合思想的运用.
根据 X^2 + Y^2 = 9 (Y>=0) 可知,
函数图像为以原点为圆心,半径为3的圆的上半部分
m =(y+3)/(x+1)可看作半圆上的点(x,y)与
定点(-1,-3)构成的直线方程的斜率.
即求直线斜率的取值范围.
当X= -1时,直线斜率不存在.
当X> -1时,m的极小值为(3,0)与(-1,-3)构成的斜率
故m=[0-(-3)]/[3-(-1)]=3/4
当X< -1时,m的极大值为(-3,0)与(-1,-3)的斜率
故m=[0-(-3)]/[-3-(-1)]=-(3/2)
所以m的取值范围是(-∞,-3/2)U(3/4,+∞)
根据 X^2 + Y^2 = 9 (Y>=0) 可知,
函数图像为以原点为圆心,半径为3的圆的上半部分
m =(y+3)/(x+1)可看作半圆上的点(x,y)与
定点(-1,-3)构成的直线方程的斜率.
即求直线斜率的取值范围.
当X= -1时,直线斜率不存在.
当X> -1时,m的极小值为(3,0)与(-1,-3)构成的斜率
故m=[0-(-3)]/[3-(-1)]=3/4
当X< -1时,m的极大值为(-3,0)与(-1,-3)的斜率
故m=[0-(-3)]/[-3-(-1)]=-(3/2)
所以m的取值范围是(-∞,-3/2)U(3/4,+∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询