什么是参数方程?

 我来答
优秀5Hp8g
2022-08-19
知道答主
回答量:2
采纳率:0%
帮助的人:1201
展开全部
参数是参变数的简称。它是研究运动等一类问题中产生的。质点运动时,它的位置必然与时间有关系,也就是说,质的坐标x,y与时间t之间有函数关系x=f(t),y=g(t),这两个函数式中的变量t,相对于表示质点的几何位置的变量x,y来说,就是一个“参与的变量”。
这类实际问题中的参变量,被抽象到数学中,就成了参数。我们所学的参数方程中的参数,其任务在于沟通变量x,y及一些常量之间的联系,为研究曲线的形状和性质提供方便。
用参数方程描述运动规律时,常常比用普通方程更为直接简便。对于解决求最大射程、最大高度、飞行时间或轨迹等一系列问题都比较理想。有些重要但较复杂的曲线(例如圆的渐开线),建立它们的普通方程比较困难,甚至不可能,列出的方程既复杂又不易理解。
根据方程画出曲线十分费时;而利用参数方程把两个变量x,y间接地联系起来,常常比较容易,方程简单明确,且画图也不太困难。
yqsy一切隨缘
高能答主

2023-01-13 · 把复杂的事情简单说给你听
知道顶级答主
回答量:6.3万
采纳率:92%
帮助的人:5077万
展开全部
参数方程
一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x、y都是某个变数t的函数,并且对于t的每一个允许的取值,由方程组确定的点(x, y)都在这条曲线上,那么这个方程就叫做曲线的参数方程,联系变数x、y的变数t叫做参变数,简称参数。
相对而言,直接给出点坐标间关系的方程即称为普通方程。

经典例题
例题
极坐标方程()和参数方程(为参数)所表示的图形分别是(  )
A
直线、射线和圆

B
圆、射线和双曲线

C
两直线和椭圆

D
圆和抛物线

[答案]
B
圆、射线和双曲线
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式