20、求微分方程+y''-y=(sinx)^2-1/2+通解。+2
1个回答
展开全部
y''-y = (sinx)^2-1/2 = -(1/2)cos2x
特征方程 r^2 - 1 = 0, r = -1, 1
设特解 y = Acos2x+Bsin2x
则 y' = -2Asin2x+2Bcos2x, y'' = -4Acos2x-4Bsin2x,
代入 y''-y = -(1/2)cos2x, 得 -5Acos2x - 5Bsin2x = -(1/2)cos2x
A = 1/10, B = 0, 特解 y = (1/10)cos2x
通解 y = C1e^(-x) + C2e^x + (1/10)cos2x
特征方程 r^2 - 1 = 0, r = -1, 1
设特解 y = Acos2x+Bsin2x
则 y' = -2Asin2x+2Bcos2x, y'' = -4Acos2x-4Bsin2x,
代入 y''-y = -(1/2)cos2x, 得 -5Acos2x - 5Bsin2x = -(1/2)cos2x
A = 1/10, B = 0, 特解 y = (1/10)cos2x
通解 y = C1e^(-x) + C2e^x + (1/10)cos2x
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询