方差分析有什么用?
2023-10-13 · 百度认证:SPSSAU官方账号,优质教育领域创作者
方差分析就是通过检验各总体的均值是否相等来判断分类型自变量(定类变量)对数据型因变量(定量变量)是否有显著影响。方差分析一般分为单因素方差分析、双因素方差分析、三因素方差分析以及多因素方差分析。
比如:
用4种饲料喂猪,共19头猪分为4组,每组用1种饲料。一段时间后称重,比较4种饲料对猪体重增加的作用有无不同。部分数据如下:
方差分析结果将从四个方面进行说明,其中包括方差分析结果、图示化、中间过程值以及效应量指标。
分析X与Y之间是否呈现出显著性(p值小于0.05或0.01);如果呈现出显著性;通过具体对比平均值大小,描述具体差异所在。从上表可以看出p值小于0.05,所以不同饲料样本对于体重全部均呈现出显著性差异。及具体对比差异可知, 有着较为明显差异的组别平均值得分对比结果为“B>A;C>A;D>A;C>B;D>B;D>C;D> C> B>A”。也就是说研究中D饲料的成效最好。
从折线图中可以看出四种不同饲料直接的体重是具体差异性的,而且饲料D效果最好。接下来对方差结果的中间过程值进行描述。
从上表可以看出组间差异为20538.698,组内差异是652.159,总差异是21190.858,其中组间均方为6846.233,组内均方为43.477,F值为157.467。并且p值小于0,05,说明不同饲料对于猪的体重有显著性差异。最后对效应量进行查看。
如果方差分析显示呈现出显著性差异(p<0.05),可通过平均值对比具体差异,同时还可使用效应量(Effect size)研究差异幅度情况。一般研究中不用过度关注,如果需要研究差异幅度时可以关注该指标。
进行方差分析需要数据满足以下两个基本前提:
各观测变量总体要服从正态分布。
各观测变量的总体满足方差齐。
这是方差分析的两个基本前提条件,理论上讲,数据必须满足以上两个条件才能进行方差分析,如不满足,则使用非参数检验。
但现实研究中,数据多数情况下无法到达理想状态。正态性检验要求严格通常无法满足,实际研究中,若峰度绝对值小于10并且偏度绝对值小于3,或正态图基本上呈现出钟形,则说明数据虽然不是绝对正态,但基本可接受为正态分布,此时也可使用方差分析进行分析。
方差分析的用途:
1、两个或多个样本均数间的比较。
2、分析两个或多个因素间的交互作用。
3、回归方程的线性假设检验。
4、多元线性回归分析中偏回归系数的假设检验。
5、两样本的方差齐性检验等。
由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。