方差分析的作用是什么?
方差分析:根据不同需要把某变量方差分解为不同的部分,比较它们之间的大小并用F检验进行显著性检验的方法。 又称“变异数分析”或“F检验”,是用于两个及两个以上样本均数差别的显著性检验。
F值是两个均方的比值[效应项/误差项],不可能出现负值。F值越大[与给定显著水平的标准F值相比较]说明处理之间效果[差异]越明显,误差项越小说明试验精度越高。
扩展资料:
方差分析,又称“变异数分析”,是R.A.Fisher发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体 。
方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
方差是衡量源数据和期望值相差的度量值。
1、设C是常数,则D(C)=0
此性质可以推广到有限多个两两不相关的随机变量之和的情况。
4、D(X)=0的充分必要条件是X以概率1取常数E(X),即
(当且仅当X取常数值E(X)时的概率为1时,D(X)=0。)
注:不能得出X恒等于常数,当x是连续的时候X可以在任意有限个点取不等于常数c的值。
参考资料:百度百科-方差分析
2023-10-13 · 百度认证:SPSSAU官方账号,优质教育领域创作者
方差分析就是通过检验各总体的均值是否相等来判断分类型自变量(定类变量)对数据型因变量(定量变量)是否有显著影响。方差分析一般分为单因素方差分析、双因素方差分析、三因素方差分析以及多因素方差分析。
比如:
用4种饲料喂猪,共19头猪分为4组,每组用1种饲料。一段时间后称重,比较4种饲料对猪体重增加的作用有无不同。部分数据如下:
方差分析结果将从四个方面进行说明,其中包括方差分析结果、图示化、中间过程值以及效应量指标。
分析X与Y之间是否呈现出显著性(p值小于0.05或0.01);如果呈现出显著性;通过具体对比平均值大小,描述具体差异所在。从上表可以看出p值小于0.05,所以不同饲料样本对于体重全部均呈现出显著性差异。及具体对比差异可知, 有着较为明显差异的组别平均值得分对比结果为“B>A;C>A;D>A;C>B;D>B;D>C;D> C> B>A”。也就是说研究中D饲料的成效最好。
从折线图中可以看出四种不同饲料直接的体重是具体差异性的,而且饲料D效果最好。接下来对方差结果的中间过程值进行描述。
从上表可以看出组间差异为20538.698,组内差异是652.159,总差异是21190.858,其中组间均方为6846.233,组内均方为43.477,F值为157.467。并且p值小于0,05,说明不同饲料对于猪的体重有显著性差异。最后对效应量进行查看。
如果方差分析显示呈现出显著性差异(p<0.05),可通过平均值对比具体差异,同时还可使用效应量(Effect size)研究差异幅度情况。一般研究中不用过度关注,如果需要研究差异幅度时可以关注该指标。