椭圆上哪一点到焦点的距离最小,为什么?求证明

 我来答
刺任芹O
2022-11-16 · TA获得超过6.2万个赞
知道顶级答主
回答量:38.7万
采纳率:99%
帮助的人:8904万
展开全部

可设椭圆方程为

(x²/a²)+(y²/b²)=1 (a>b>0)

两个焦点F1(-c,0),F2(c,0)

长轴的两个端点A1(-a,0),A2(a,0)

因点P在椭圆上,故可设P(acost,bsint), t∈R。

由两点间距离公式可得

|PF1|²=(acost+c)²+(bsint)²

=a²cos²t+2accost+c²+b²sin²t

=(a²-b²)cos²t+2accost+c²+b²

=c²cos²t+2accost+a²

=(a+ccost)²

由-1≤cost≤1 且a>c>0可知

0<a-c≤a+ccost≤a+c

∴|PF1|=a+ccost

∴| PF1|min=a-c,此时,cost=-1,sint=0,P(-a,0)

又|PF1|+|PF2|=2a

∴当|PF1|min=a-c时,|PF2|max=a+c,

此时点P在长轴的一个端点上。

扩展资料:

当焦点在x轴时,椭圆的标准方程是:x^2/a^2+y^2/b^2=1,(a>b>0);

当焦点在y轴时,椭圆的标准方程是:y^2/a^2+x^2/b^2=1,(a>b>0);

其中a^2-c^2=b^2

推导:PF1+PF2>F1F2(P为椭圆上的点,F为焦点)

设椭圆的两个焦点分别为F1,F2,它们之间的距离为2c,椭圆上任意一点到F1,F2的距离和为2a(2a>2c)。

以F1,F2所在直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系xOy,则F1,F2的坐标分别为(-c,0),(c,0)。

当焦点在X轴上时焦点坐标F1(-c,0)F2(c,0)

当焦点在Y轴上时焦点坐标F1(0,-c)F2(0,c)

参考资料来源:百度百科--椭圆的标准方程

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
东莞大凡
2024-11-19 广告
作为东莞市大凡光学科技有限公司的工作人员,对于标定板棋格尺寸的问题,可以提供以下信息:标定板棋格尺寸因具体应用和需求而异。我们公司提供多种尺寸的棋盘格标定板,例如63*63mm等常见规格,同时也支持定制服务,以满足不同客户的需求。大尺寸标定... 点击进入详情页
本回答由东莞大凡提供
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式