一道关于大一微积分的问题。
lim[n趋向于无穷]π/n(cos^2π/n+cos^22π/n+...+cos^2(n-1)π/n)=?求教……!!!...
lim[n趋向于无穷]π/n(cos^2 π/n+cos^2 2π/n+...+cos^2 (n-1)π/n)=?
求教……!!! 展开
求教……!!! 展开
1个回答
展开全部
解(定积分法):
原式=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n))]
=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n)+cos²(nπ/n)-cos²(nπ/n))] (添加cos²(nπ/n)项)
=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n)+cos²(nπ/n))]+lim(n->∞)[(π/n)cos²(nπ/n)]
=π∫(0,1)cos²(πx)dx+lim(n->∞)(π/n) (∫(0,1)表示从0到1积分)
=π/2∫(0,1)[1+cos(2πx)]dx
=π/2[x+sin(2πx)/(2π)]|(0,1)
=π/2(1+0-0-0)
=π/2.
原式=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n))]
=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n)+cos²(nπ/n)-cos²(nπ/n))] (添加cos²(nπ/n)项)
=lim(n->∞)[π/n(cos²(π/n)+cos²(2π/n)+...+cos²((n-1)π/n)+cos²(nπ/n))]+lim(n->∞)[(π/n)cos²(nπ/n)]
=π∫(0,1)cos²(πx)dx+lim(n->∞)(π/n) (∫(0,1)表示从0到1积分)
=π/2∫(0,1)[1+cos(2πx)]dx
=π/2[x+sin(2πx)/(2π)]|(0,1)
=π/2(1+0-0-0)
=π/2.
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询