已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2*a3=45,a1+a4=14
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2*a3=45,a1+a4=142009-06-25|分享(1)求数列{an}通项公式(2)通过公式Bn=...
已知等差数列{an}中,公差d>0,其前n项和为Sn,且满足:a2*a3=45,a1+a4=14
2009-06-25 | 分享
(1)求数列{an}通项公式
(2)通过公式Bn=Sn/(n+c)构造一个新数列{Bn}。若{Bn}也是等差数列,求非零常数c
(3)求f(n)=Bn/[(n+25)*B(n+1)]的最大值 展开
2009-06-25 | 分享
(1)求数列{an}通项公式
(2)通过公式Bn=Sn/(n+c)构造一个新数列{Bn}。若{Bn}也是等差数列,求非零常数c
(3)求f(n)=Bn/[(n+25)*B(n+1)]的最大值 展开
2个回答
展开全部
解:∵an为等差数列
∴a2=a1+d,a3=a1+2d,a4=a1+3d
又a2*a3=45
∴(a1+d)(a1+2d)=45
又a1+a4=14
∴a1+(3/2)d=7
a1+d=7-(1/2)d
∴[7-(1/2)d]*[7+(1/2)d]=45
d^2=16
d=4,d=-4(舍去,∵d>0)
a1=7-(3/2)*4
=1
∴Sn=na1+[n(n-1)d/2]
=n+[n(n-1)*4/2)
=2n^2-n
又∵Bn=Sn/(n+c)
∴Bn=(2n^2-n)/(n+c)
又Bn是等差数列
∴B1=1/(c+1)
B2=6/(c+2)
B3=15/(c+3)
∴B2-B1=B3-B2,即:[6/(c+2)]-[1/(c+1)]=[15/(c+3)]-[6/(c+2)]
整理得:6(c+1)(c+3)-(c+2)(c+3)=15(c+1)(c+2)-6(c+1)(c+3)
2c^2+c=0
解之得:c=-1/2,c=0(舍去,∵c非零常数)
c=-1/2
∴Bn=(2n^2-n)/(n+c)
=n(2n-1)/[(1/2)(2n-1)]
=2n
∴B(n+1)=2(n+1)
∴f(n)=Bn/[(n+25)*B(n+1)]
=2n/[(n+25)*2(n+1)]
=[1/(n+25)]-[1/(n+1)(n+25)
∴f(n)的最大值为f(1)=1/52
∴a2=a1+d,a3=a1+2d,a4=a1+3d
又a2*a3=45
∴(a1+d)(a1+2d)=45
又a1+a4=14
∴a1+(3/2)d=7
a1+d=7-(1/2)d
∴[7-(1/2)d]*[7+(1/2)d]=45
d^2=16
d=4,d=-4(舍去,∵d>0)
a1=7-(3/2)*4
=1
∴Sn=na1+[n(n-1)d/2]
=n+[n(n-1)*4/2)
=2n^2-n
又∵Bn=Sn/(n+c)
∴Bn=(2n^2-n)/(n+c)
又Bn是等差数列
∴B1=1/(c+1)
B2=6/(c+2)
B3=15/(c+3)
∴B2-B1=B3-B2,即:[6/(c+2)]-[1/(c+1)]=[15/(c+3)]-[6/(c+2)]
整理得:6(c+1)(c+3)-(c+2)(c+3)=15(c+1)(c+2)-6(c+1)(c+3)
2c^2+c=0
解之得:c=-1/2,c=0(舍去,∵c非零常数)
c=-1/2
∴Bn=(2n^2-n)/(n+c)
=n(2n-1)/[(1/2)(2n-1)]
=2n
∴B(n+1)=2(n+1)
∴f(n)=Bn/[(n+25)*B(n+1)]
=2n/[(n+25)*2(n+1)]
=[1/(n+25)]-[1/(n+1)(n+25)
∴f(n)的最大值为f(1)=1/52
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询