已知向量OA=(cosa,sina)(a∈[-∏,0]).向量m=(√3,1),n=(0,-√3),且m⊥(OA-n)
1个回答
展开全部
1.解:OA-n=(cosα,sinα+√3)
因为m⊥(OA-n)
所以m*(OA-n)=0
即 √3cosα+sinα+√3=0
(√3)/2 cosα+1/2 sinα+(√3)/2=0
sin(π/3+α)=-(√3)/2
因为(α∈[-π,0])
所以α=-π/2
所以向量OA=(√2/2,-√2/2)
2.cos(β-π)=√2/10
则sinβ=√2/10
sin(2α-β)=sin(-π-β)=-sin(π+β)=-cosβ=√98/10
所以2α-β=arcsin(√98/10)
因为m⊥(OA-n)
所以m*(OA-n)=0
即 √3cosα+sinα+√3=0
(√3)/2 cosα+1/2 sinα+(√3)/2=0
sin(π/3+α)=-(√3)/2
因为(α∈[-π,0])
所以α=-π/2
所以向量OA=(√2/2,-√2/2)
2.cos(β-π)=√2/10
则sinβ=√2/10
sin(2α-β)=sin(-π-β)=-sin(π+β)=-cosβ=√98/10
所以2α-β=arcsin(√98/10)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询