诱导公式大全?

文君复书
推荐于2017-11-26 · 宁静以致远,勤俭以修身。
文君复书
采纳数:2900 获赞数:5901

向TA提问 私信TA
展开全部
看看这个吧!比较全面,希望你满意!

诱导公式是指三角函数中将角度比较大的三角函数利用角的周期性,转换为角度比较小的三角函数的公式。诱导公式有六组共54个。
设α为任意角,终边相同的角的同一三角函数的值相等:对于x轴正半轴为起点轴而言
  弧度制下的角的表示:
  sin(2kπ+α)=sinα (k∈Z)
  cos(2kπ+α)=cosα (k∈Z)
  tan(2kπ+α)=tanα (k∈Z)
  cot(2kπ+α)=cotα (k∈Z)
  sec(2kπ+α)=secα (k∈Z)
  csc(2kπ+α)=cscα (k∈Z)
  角度制下的角的表示:
  sin (α+k·360°)=sinα(k∈Z)
  cos(α+k·360°)=cosα(k∈Z)
  tan (α+k·360°)=tanα(k∈Z)
  cot(α+k·360°)=cotα (k∈Z)
  sec(α+k·360°)=secα (k∈Z)
  csc(α+k·360°)=cscα (k∈Z)
1.2 公式二
  设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:对于x轴负半轴为起点轴而言
  弧度制下的角的表示:
  sin(π+α)=-sinα
  cos(π+α)=-cosα
  tan(π+α)=tanα
  cot(π+α)=cotα
  sec(π+α)=-secα
  csc(π+α)=-cscα
  角度制下的角的表示:
  sin(180°+α)=-sinα
  cos(180°+α)=-cosα
  tan(180°+α)=tanα
  cot(180°+α)=cotα
  sec(180°+α)=-secα
  csc(180°+α)=-cscα
1.3 公式三
  任意角α与 -α的三角函数值之间的关系:
  sin(-α)=-sinα
  cos(-α)=cosα
  tan(-α)=-tanα
  cot(-α)=-cotα
  sec(-α)=secα
  csc (-α)=-cscα
1.4 公式四
  利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
  弧度制下的角的表示:
  sin(π-α)=sinα
  cos(π-α)=-cosα
  tan(π-α)=-tanα
  cot(π-α)=-cotα
  sec(π-α)=-secα
  csc(π-α)=cscα
  角度制下的角的表示:
  sin(180°-α)=sinα
  cos(180°-α)=-cosα
  tan(180°-α)=-tanα
  cot(180°-α)=-cotα
  sec(180°-α)=-secα
  csc(180°-α)=cscα
1.5 公式五
  利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
  弧度制下的角的表示:
  sin(2π-α)=-sinα
  cos(2π-α)=cosα
  tan(2π-α)=-tanα
  cot(2π-α)=-cotα
  sec(2π-α)=secα
  csc(2π-α)=-cscα
  角度制下的角的表示:
  sin(360°-α)=-sinα
  cos(360°-α)=cosα
  tan(360°-α)=-tanα
  cot(360°-α)=-cotα
  sec(360°-α)=secα
  csc(360°-α)=-cscα
1.6 公式六
  π/2±α 及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)
  ⒈ π/2+α与α的三角函数值之间的关系
  弧度制下的角的表示:
  sin(π/2+α)=cosα
  cos(π/2+α)=—sinα
  tan(π/2+α)=-cotα
  cot(π/2+α)=-tanα
  sec(π/2+α)=-cscα
  csc(π/2+α)=secα
  角度制下的角的表示:
  sin(90°+α)=cosα
  cos(90°+α)=-sinα
  tan(90°+α)=-cotα
  cot(90°+α)=-tanα
  sec(90°+α)=-cscα
  csc(90°+α)=secα[3]
  ⒉ π/2-α与α的三角函数值之间的关系
  弧度制下的角的表示:
  sin(π/2-α)=cosα
  cos(π/2-α)=sinα
  tan(π/2-α)=cotα
  cot(π/2-α)=tanα
  sec(π/2-α)=cscα
  csc(π/2-α)=secα
  角度制下的角的表示:
  sin (90°-α)=cosα
  cos (90°-α)=sinα
  tan (90°-α)=cotα
  cot (90°-α)=tanα
  sec (90°-α)=cscα
  csc (90°-α)=secα[3]
  ⒊ 3π/2+α与α的三角函数值之间的关系
  弧度制下的角的表示:
  sin(3π/2+α)=-cosα
  cos(3π/2+α)=sinα
  tan(3π/2+α)=-cotα
  cot(3π/2+α)=-tanα
  sec(3π/2+α)=cscα
  csc(3π/2+α)=-secα
  角度制下的角的表示:
  sin(270°+α)=-cosα
  cos(270°+α)=sinα
  tan(270°+α)=-cotα
  cot(270°+α)=-tanα
  sec(270°+α)=cscα
  csc(270°+α)=-secα [3]
  ⒋ 3π/2-α与α的三角函数值之间的关系[1-2]
  弧度制下的角的表示:
  sin(3π/2-α)=-cosα
  cos(3π/2-α)=-sinα
  tan(3π/2-α)=cotα
  cot(3π/2-α)=tanα
  sec(3π/2-α)=-cscα
  csc(3π/2-α)=-secα
  角度制下的角的表示:
  sin(270°-α)=-cosα
  cos(270°-α)=-sinα
  tan(270°-α)=cotα
  cot(270°-α)=tanα
  sec(270°-α)=-cscα
  csc(270°-α)=-secα
2 诱导公式记忆
  奇变偶不变,符号看象限。
2.1 规律
  公式一到公式五函数名未改变, 公式六函数名发生改变。
  公式一到公式五可简记为:函数名不变,符号看象限。即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。[4]
  上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,
  ①当k是偶数时,得到α的同名函数值,即函数名不改变;
  ②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)
  例如:
  sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
  当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。
  所以sin(2π-α)=-sinα[5]
  纵变横不变符号看象限
  总结(略)
2.2 记忆口诀
  奇变偶不变,符号看象限。
  公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α
  所在象限的原三角函数值的符号可记忆
  水平诱导名不变;符号看象限。
  各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.
  这十二字口诀的意思就是说:
  第一象限内任何一个角的三角函数值都是“+”;
  第二象限内只有正弦、余割是“+”,其余全部是“-”;
  第三象限内只有正切、余切函数是“+”,弦函数是“-”;
  第四象限内只有余弦、正割是“+”,其余全部是“-”。
3 同角三角函数关系
3.1 倒数关系
  sinα·cscα=1
  tanα·cotα=1
  cosα·secα=1[
王老师1986是我
2014-08-08 · 超过38用户采纳过TA的回答
知道答主
回答量:260
采纳率:12%
帮助的人:102万
展开全部

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式