两题初中数学题,求详细步骤,急!!
展开全部
1证明:∵BD垂直于AC,CE垂直于AB,
∴∠ADB=∠AEC=90°
∵∠A=∠A
AB=AC
∴△ADB≌△AEC(AAS)
∴AE=AD(全等三角形的对应边相等)
∴AB-AE=AC-AD
即:BE=CD
2证明: (1)① ∵ ∠ADC = ∠ACB = 90 ,
∴ ∠CAD + ACD = 90 , ∠BCE + ∠ACD = 90 .
∴ ∠CAD = ∠BCE .
∵ AC = BC ,
∴ △ ACD ≌ △CBE ;
②∵ △ ADC ≌ △CED ,
∴ CE = AD , CD = BE .
∴ DE = CE + CD = AD + BE .
(2)∵ ∠ADC = ∠CEB = ∠ACB = 90 ,
∴ ∠ACD = ∠CBE .
∵AC=BC ,
∴ △ ACD ≌ △CBE .
∴ CE = AD , CD = BE .
∴ DE = CE-CD = AD-BE .
∴∠ADB=∠AEC=90°
∵∠A=∠A
AB=AC
∴△ADB≌△AEC(AAS)
∴AE=AD(全等三角形的对应边相等)
∴AB-AE=AC-AD
即:BE=CD
2证明: (1)① ∵ ∠ADC = ∠ACB = 90 ,
∴ ∠CAD + ACD = 90 , ∠BCE + ∠ACD = 90 .
∴ ∠CAD = ∠BCE .
∵ AC = BC ,
∴ △ ACD ≌ △CBE ;
②∵ △ ADC ≌ △CED ,
∴ CE = AD , CD = BE .
∴ DE = CE + CD = AD + BE .
(2)∵ ∠ADC = ∠CEB = ∠ACB = 90 ,
∴ ∠ACD = ∠CBE .
∵AC=BC ,
∴ △ ACD ≌ △CBE .
∴ CE = AD , CD = BE .
∴ DE = CE-CD = AD-BE .
追答
其他楼居然这么明目张胆的抄袭
追问
谢谢
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询