已知函数f(x)=sin(x+θ) +acos(x+2θ) π 2 ) (1)当a= 2 ,
已知函数f(x)=sin(x+θ)+acos(x+2θ)π2)(1)当a=2,θ=π4时,求f(x)在区间[0,π]上的最大值与最小值;(2)若f(π2)=0,f(π)=...
已知函数f(x)=sin(x+θ)
+acos(x+2θ)
π 2 )
(1)当a= 2 ,θ= π 4 时,求f(x)在区间
[0,π]上的最大值与最小值;
(2)若f( π 2 )=0,f(π)=1,求a,θ的
值. 展开
+acos(x+2θ)
π 2 )
(1)当a= 2 ,θ= π 4 时,求f(x)在区间
[0,π]上的最大值与最小值;
(2)若f( π 2 )=0,f(π)=1,求a,θ的
值. 展开
2014-08-28 · 知道合伙人教育行家
关注
展开全部
第一问:
f(x) = sin(x+θ) + acos(x+2θ)
a=√2,θ=π/4时:
f(x) = sin(x+π/4)+√2cos(x+π/2)
= √2/2sinx+√2/2cosx-√2cosx
= √2/2sinx -√2/2cosx
= sin(x-π/4)
x∈【0,π】
x-π/4∈【-π/4,3π/4】
x-π/4=π/2时,f(x)取最大值,f(x)max = sin(π/2)=1
x-π/4=-π/4时,f(x)取最小值,f(x)min = sin(-π/4)=-√2/2
第二问:
f(π/2)=0,即:
sin(π/2+θ) + acos(π/2+2θ) = cosθ-asin(2θ) = cosθ-2asinθcosθ = cosθ(1-2asinθ)=0
θ∈(-π/2,π/2),∴cosθ>0
∴1-2asinθ=0
∴sinθ=1/(2a)
f(π)=1,即:
sin(π+θ) + acos(π+2θ) = -sinθ-acos2θ = -sinθ - a(1-2sin²θ) = 1
∴-1/(2a) - a [1-2/(4a²)] = 1
∴-1/(2a) - a + 1/(2a)] = -a = 1
∴a = -1
sinθ = 1/(2a) = -1/2
θ∈(-π/2,π/2)
∴θ = -π/6
f(x) = sin(x+θ) + acos(x+2θ)
a=√2,θ=π/4时:
f(x) = sin(x+π/4)+√2cos(x+π/2)
= √2/2sinx+√2/2cosx-√2cosx
= √2/2sinx -√2/2cosx
= sin(x-π/4)
x∈【0,π】
x-π/4∈【-π/4,3π/4】
x-π/4=π/2时,f(x)取最大值,f(x)max = sin(π/2)=1
x-π/4=-π/4时,f(x)取最小值,f(x)min = sin(-π/4)=-√2/2
第二问:
f(π/2)=0,即:
sin(π/2+θ) + acos(π/2+2θ) = cosθ-asin(2θ) = cosθ-2asinθcosθ = cosθ(1-2asinθ)=0
θ∈(-π/2,π/2),∴cosθ>0
∴1-2asinθ=0
∴sinθ=1/(2a)
f(π)=1,即:
sin(π+θ) + acos(π+2θ) = -sinθ-acos2θ = -sinθ - a(1-2sin²θ) = 1
∴-1/(2a) - a [1-2/(4a²)] = 1
∴-1/(2a) - a + 1/(2a)] = -a = 1
∴a = -1
sinθ = 1/(2a) = -1/2
θ∈(-π/2,π/2)
∴θ = -π/6
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询