高中数学,数列第20题第二问求讲解啊,谢谢啦!
1个回答
展开全部
(2)当n=1时,b1/a1=1-1/2=1/2,而a1=1,∴b1=1/2
当n≥2时,b1/a1+b2/a2+…+b(n-1)/a(n-1)=1-(1/2)^(n-1)
∴bn/an=1-(1/2)^n-1+(1/2)^(n-1)=(1/2)^n,
而an=2n-1,∴bn=(2n-1)*(1/2)^n (n≥2)
又当n=1时,b1=1*(1/2)^1=1/2满足此式,∴bn=(2n-1)*(1/2)^n (n∈N+)
∴Tn=1*(1/2)+3*(1/2)^2+5*(1/2)^3+…+(2n-1)*(1/2)^n ①
那么1/2*Tn=1*(1/2)^2+3*(1/2)^3+…+(2n-3)*(1/2)^n+(2n-1)*(1/2)^(n+1) ②
①-②,得:1/2*Tn=1*(1/2)+2*(1/2)^2+2*(1/2)^3+…+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
=1/2+(1/2)+(1/2)^2+…+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)
=1/2+1/2*[1-(1/2)^(n-1)]/(1-1/2)-(2n-1)*(1/2)^(n+1)
=3/2-(2n+3)*(1/2)^(n+1)
∴Tn=3-(2n+3)*(1/2)^n
望采纳
当n≥2时,b1/a1+b2/a2+…+b(n-1)/a(n-1)=1-(1/2)^(n-1)
∴bn/an=1-(1/2)^n-1+(1/2)^(n-1)=(1/2)^n,
而an=2n-1,∴bn=(2n-1)*(1/2)^n (n≥2)
又当n=1时,b1=1*(1/2)^1=1/2满足此式,∴bn=(2n-1)*(1/2)^n (n∈N+)
∴Tn=1*(1/2)+3*(1/2)^2+5*(1/2)^3+…+(2n-1)*(1/2)^n ①
那么1/2*Tn=1*(1/2)^2+3*(1/2)^3+…+(2n-3)*(1/2)^n+(2n-1)*(1/2)^(n+1) ②
①-②,得:1/2*Tn=1*(1/2)+2*(1/2)^2+2*(1/2)^3+…+2*(1/2)^n-(2n-1)*(1/2)^(n+1)
=1/2+(1/2)+(1/2)^2+…+(1/2)^(n-1)-(2n-1)*(1/2)^(n+1)
=1/2+1/2*[1-(1/2)^(n-1)]/(1-1/2)-(2n-1)*(1/2)^(n+1)
=3/2-(2n+3)*(1/2)^(n+1)
∴Tn=3-(2n+3)*(1/2)^n
望采纳
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询