已知等比数列{an}满足a3=12,s3=36.求数列{an}的通项公式;求数列{nan}的前n
2个回答
展开全部
a(n) = aq^(n-1),
12 = a(3) = aq^2.
36 = s(3) = a + aq + aq^2 = a + aq + 12,
24 = a(1+q), q不为-1。
a = 24/(1+q).
12 = aq^2 = 24q^2/(1+q),
12(1+q) = 24q^2,
0 = 2q^2 - q - 1 = (2q+1)(q-1),
q = -1/2或q = 1.
q = -1/2时,a=24/(1+q) = 48. a(n) = 48(-1/2)^(n-1).
t(n) = 1*a(1) + 2*a(2) + 3*a(3) + ... + (n-1)a(n-1) + na(n)
= 48 + 2*48(-1/2) + 3*48*(-1/2)^2 + ... + (n-1)48(-1/2)^(n-2) + n48(-1/2)^(n-1)
(-1/2)t(n) = 48(-1/2) + 2*48*(-1/2)^2 + ... + (n-1)48(-1/2)^(n-1) + n48(-1/2)^n
(3/2)t(n) = t(n) - (-1/2)t(n) = 48 + 48(-1/2) + 48(-1/2)^2 + ... + 48(-1/2)^(n-1) - n*48(-1/2)^n.
= 48[1 + (-1/2) + (-1/2)^2 + ... + (-1/2)^(n-1)] - 48n(-1/2)^n
= 48[1 - (-1/2)^n]/(1+1/2) - 48n(-1/2)^n
= 48(2/3)[1- (-1/2)^n] - 48n(-1/2)^n
= 32 - (32 + 48n)(-1/2)^n,
t(n) = 64/3 - (64/3 + 32n)(-1/2)^n
q = 1时,a = 24/(1+q) = 12. a(n) = 12.
t(n) = 1*a(1) + 2*a(2) + 3*a(3) + ... + (n-1)a(n-1) + na(n) = 12[1 + 2 + 3 + ... + n] = 12n(n+1)/2
= 6n(n+1)
12 = a(3) = aq^2.
36 = s(3) = a + aq + aq^2 = a + aq + 12,
24 = a(1+q), q不为-1。
a = 24/(1+q).
12 = aq^2 = 24q^2/(1+q),
12(1+q) = 24q^2,
0 = 2q^2 - q - 1 = (2q+1)(q-1),
q = -1/2或q = 1.
q = -1/2时,a=24/(1+q) = 48. a(n) = 48(-1/2)^(n-1).
t(n) = 1*a(1) + 2*a(2) + 3*a(3) + ... + (n-1)a(n-1) + na(n)
= 48 + 2*48(-1/2) + 3*48*(-1/2)^2 + ... + (n-1)48(-1/2)^(n-2) + n48(-1/2)^(n-1)
(-1/2)t(n) = 48(-1/2) + 2*48*(-1/2)^2 + ... + (n-1)48(-1/2)^(n-1) + n48(-1/2)^n
(3/2)t(n) = t(n) - (-1/2)t(n) = 48 + 48(-1/2) + 48(-1/2)^2 + ... + 48(-1/2)^(n-1) - n*48(-1/2)^n.
= 48[1 + (-1/2) + (-1/2)^2 + ... + (-1/2)^(n-1)] - 48n(-1/2)^n
= 48[1 - (-1/2)^n]/(1+1/2) - 48n(-1/2)^n
= 48(2/3)[1- (-1/2)^n] - 48n(-1/2)^n
= 32 - (32 + 48n)(-1/2)^n,
t(n) = 64/3 - (64/3 + 32n)(-1/2)^n
q = 1时,a = 24/(1+q) = 12. a(n) = 12.
t(n) = 1*a(1) + 2*a(2) + 3*a(3) + ... + (n-1)a(n-1) + na(n) = 12[1 + 2 + 3 + ... + n] = 12n(n+1)/2
= 6n(n+1)
展开全部
因为等比数列a3=a1q^2=12
所以a1=12/q^2
而s3=a1(1-q^3)/(1-q)=36
所以12/q^2*(1-q^3)/(1-q)=12*(1+q+q^2)/q^2=36
所以2q^2-q-1=0
所以q=-1/2或q=1(舍弃,等比数列公比不等于1)
所以a1=48
所以an=48*(-1/2)^(n-1)
所以sn=48*(1-(-1/2)^n)/(1+1/2)=2/3*(1-(-1/2)^n)
所以a1=12/q^2
而s3=a1(1-q^3)/(1-q)=36
所以12/q^2*(1-q^3)/(1-q)=12*(1+q+q^2)/q^2=36
所以2q^2-q-1=0
所以q=-1/2或q=1(舍弃,等比数列公比不等于1)
所以a1=48
所以an=48*(-1/2)^(n-1)
所以sn=48*(1-(-1/2)^n)/(1+1/2)=2/3*(1-(-1/2)^n)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询