已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D. (1)求证:PD是⊙O的切线;(2

已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D.(1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值.... 已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点P,PD⊥AC于点D. (1)求证:PD是⊙O的切线;(2)若∠CAB=120°,AB=6,求BC的值. 展开
 我来答
大小美疆929
推荐于2016-07-27 · 超过82用户采纳过TA的回答
知道答主
回答量:143
采纳率:100%
帮助的人:78.8万
展开全部
(1)证明见解析;(2)BC=6


试题分析:(1)利用等腰三角形的性质得到∠B=∠C和∠B=∠OPB,则∠OPB=∠C,于是可判断OP∥AC,由于PD⊥AC,所以OP⊥PD,然后根据切线的判定定理可得到PD是⊙O的切线;
(2)由AB为直径得∠APB=90°,根据等腰三角形的性质得BP=CP,所以∠BAP=60°,在RtBAP中,根据含30度的直角三角形三边的关系得AP= AB=3,BP= AP=3 ,所以BC=2BP=6
试题解析:(1)证明:∵AB=AC,
∴∠B=∠C,
∵OP=OB,
∴∠B=∠OPB,
∴∠OPB=∠C,
∴OP∥AC,
∵PD⊥AC,
∴OP⊥PD,
∴PD是⊙O的切线;
(2)解:连结AP,如图,

∵AB为直径,
∴∠APB=90°,
∴BP=CP,
∵∠CAB=120°,
∴∠BAP=60°,
在RtBAP中,AB=6,∠B=30°,
∴AP= AB=3,
∴BP= AP=3
∴BC=2BP=6
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式