定积分求心形线所围成的面积
分析如下
1、心形线围成的图形面积,计算方法如下:心形线极坐标方程为ρ=a(1-sinθ),那么所围成的面积为:S=2x(1/2)∫(-π/2->π/2) ρ²(θ)dθ=∫(-π/2->π/2) a²(1-sinθ)²dθ=3πa²/2
2、心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。
3、其极坐标方程为:水平方向: r=a(1-cosθ) 或 r=a(1+cosθ) (a>0);垂直方向: r=a(1-sinθ) 或 r=a(1+sinθ) (a>0)
其图像和平面坐标的分标段方程为:
拓展资料
定积分性质
1、当a=b时,
2、当a>b时,
3、常数可以提到积分号前。
4、代数和的积分等于积分的代数和。
5、定积分的可加性:如果积分区间[a,b]被c分为两个子区间[a,c]与[c,b]则有
参考资料来源:百度百科:定积分
所围成的面积为2A。
心形线上下对称,A为上半部分面积,S(面积)=2A。
如图:
拓展资料:
数学表达:
极坐标方程
水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)
垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)
直角坐标方程:
心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)
参数方程:
-pi<=t<=pi 或 0<=t<=2*pi
x=a*(2*cos(t)-cos(2*t))
y=a*(2*sin(t)-sin(2*t))
所围面积为3/2*PI*a^2,形成的弧长为8a。
参考资料:心形线 百度百科